scholarly journals Record statistics in integer compositions

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Arnold Knopfmacher ◽  
Toufik Mansour

International audience A $\textit{composition}$ $\sigma =a_1 a_2 \ldots a_m$ of $n$ is an ordered collection of positive integers whose sum is $n$. An element $a_i$ in $\sigma$ is a strong (weak) $\textit{record}$ if $a_i> a_j (a_i \geq a_j)$ for all $j=1,2,\ldots,i-1$. Furthermore, the position of this record is $i$. We derive generating functions for the total number of strong (weak) records in all compositions of $n$, as well as for the sum of the positions of the records in all compositions of $n$, where the parts $a_i$ belong to a fixed subset $A$ of the natural numbers. In particular when $A=\mathbb{N}$, we find the asymptotic mean values for the number, and for the sum of positions, of records in compositions of $n$.

2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Aubrey Blecher ◽  
Charlotte Brennan ◽  
Arnold Knopfmacher

Combinatorics International audience We consider compositions of n, i.e., sequences of positive integers (or parts) (σi)i=1k where σ1+σ2+...+σk=n. We define a maximum to be any part which is not less than any other part. The variable of interest is the size of the descent immediately following the first and the last maximum. Using generating functions and Mellin transforms, we obtain asymptotic expressions for the average size of these descents. Finally, we show with the use of a simple bijection between the compositions of n for n>1, that on average the descent after the last maximum is greater than the descent after the first.


10.37236/381 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Arnold Knopfmacher ◽  
Toufik Mansour ◽  
Stephan Wagner

A partition of $[n]=\{1,2,\ldots,n\}$ is a decomposition of $[n]$ into nonempty subsets called blocks. We will make use of the canonical representation of a partition as a word over a finite alphabet, known as a restricted growth function. An element $a_i$ in such a word $\pi$ is a strong (weak) record if $a_i> a_j$ ($a_i\geq a_j$) for all $j=1,2,\ldots,i-1$. Furthermore, the position of this record is $i$. We derive generating functions for the total number of strong (weak) records in all words corresponding to partitions of $[n]$, as well as for the sum of the positions of the records. In addition we find the asymptotic mean values and variances for the number, and for the sum of positions, of strong (weak) records in all partitions of $[n]$.


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Armend Shabani ◽  
Rexhep Gjergji

International audience A composition $\pi = \pi_1 \pi_2 \cdots \pi_m$ of a positive integer $n$ is an ordered collection of one or more positive integers whose sum is $n$. The number of summands, namely $m$, is called the number of parts of $\pi$. Using linear algebra, we determine formulas for generating functions that count compositions of $n$ with $m$ parts, according to the number of occurrences of the subword pattern $\tau$, and according to the sum, over all occurrences of $\tau$, of the first integers in their respective occurrences, where $\tau$ is any pattern of length three with exactly 2 distinct letters.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Toufik Mansour ◽  
Basel O. Sirhan

International audience Let ℕ be the set of all positive integers and let A be any ordered subset of ℕ. Recently, Heubach and Mansour enumerated the number of compositions of n with m parts in A that contain the subword τ exactly r times, where τ∈{111,112,221,123}. Our aims are (1) to generalize the above results, i.e., to enumerate the number of compositions of n with m parts in A that contain an ℓ-letter subword, and (2) to analyze the number of compositions of n with m parts that avoid an ℓ-letter pattern, for given ℓ. We use tools such as asymptotic analysis of generating functions leading to Gaussian asymptotic.


10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Nayandeep Deka Baruah ◽  
Hirakjyoti Das

Let $b_{\ell;3}(n)$ denote the number of $\ell$-regular partitions of $n$ in 3 colours. In this paper, we find some general generating functions and new infinite families of congruences modulo arbitrary powers of $3$ when $\ell\in\{9,27\}$. For instance, for positive integers $n$ and $k$, we have\begin{align*}b_{9;3}\left(3^k\cdot n+3^k-1\right)&\equiv0~\left(\textup{mod}~3^{2k}\right),\\b_{27;3}\left(3^{2k+3}\cdot n+\dfrac{3^{2k+4}-13}{4}\right)&\equiv0~\left(\textup{mod}~3^{2k+5}\right).\end{align*}


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Hoda Bidkhori

International audience In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l'étude des petits intervalles.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


Sign in / Sign up

Export Citation Format

Share Document