scholarly journals A Combinatorial Approach to Multiplicity-Free Richardson Subvarieties of the Grassmannian

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Michelle Snider

International audience We consider Buch's rule for K-theory of the Grassmannian, in the Schur multiplicity-free cases classified by Stembridge. Using a result of Knutson, one sees that Buch's coefficients are related to Möbius inversion. We give a direct combinatorial proof of this by considering the product expansion for Grassmannian Grothendieck polynomials. We end with an extension to the multiplicity-free cases of Thomas and Yong. On examine la règle de Buch pour la K-théorie de la variété grassmannienne dans les cas sans multiplicité de Schur, qui ont étés classifiés par Stembridge. En utilisant un résultat de Knutson, on démontre que les coefficients de Buch sont liés à l'inversion de Möbius. On en fait une preuve directe et combinatoire qui passe par le developpement de produits de polynômes de Grothendieck. Pour conclure, on donne une application de cette théorie aux cas sans multiplicité de Thomas et Yong.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Pavel Galashin ◽  
Darij Grinberg ◽  
Gaku Liu

International audience The dual stable Grothendieck polynomials are a deformation of the Schur functions, originating in the study of the K-theory of the Grassmannian. We generalize these polynomials by introducing a countable family of additional parameters such that the generalization still defines symmetric functions. We outline two self-contained proofs of this fact, one of which constructs a family of involutions on the set of reverse plane partitions generalizing the Bender-Knuth involutions on semistandard tableaux, whereas the other classifies the structure of reverse plane partitions with entries 1 and 2.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Maria Monks Gillespie

International audience We investigate the combinatorics of the symmetry relation H μ(x; q, t) = H μ∗ (x; t, q) on the transformed Macdonald polynomials, from the point of view of the combinatorial formula of Haglund, Haiman, and Loehr in terms of the inv and maj statistics on Young diagram fillings. By generalizing the Carlitz bijection on permutations, we provide a purely combinatorial proof of the relation in the case of Hall-Littlewood polynomials (q = 0) for the coefficients of the square-free monomials in the variables x. Our work in this case relates the Macdonald inv and maj statistics to the monomial basis of the modules Rμ studied by Garsia and Procesi. We also provide a new proof for the full Macdonald relation in the case when μ is a hook shape.


10.37236/5350 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Maria Monks Gillespie

Using the combinatorial formula for the transformed Macdonald polynomials of Haglund, Haiman, and Loehr, we investigate the combinatorics of the symmetry relation $\widetilde{H}_\mu(\mathbf{x};q,t)=\widetilde{H}_{\mu^\ast}(\mathbf{x};t,q)$. We provide a purely combinatorial proof of the relation in the case of Hall-Littlewood polynomials ($q=0$) when $\mu$ is a partition with at most three rows, and for the coefficients of the square-free monomials in $\mathbf{x}$ for all shapes $\mu$. We also provide a proof for the full relation in the case when $\mu$ is a hook shape, and for all shapes at the specialization $t=1$. Our work in the Hall-Littlewood case reveals a new recursive structure for the cocharge statistic on words.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Ekaterina A. Vassilieva

International audience We look at the number of permutations $\beta$ of $[N]$ with $m$ cycles such that $(1 2 \ldots N) \beta^{-1}$ is a long cycle. These numbers appear as coefficients of linear monomials in Kerov's and Stanley's character polynomials. D. Zagier, using algebraic methods, found an unexpected connection with Stirling numbers of size $N+1$. We present the first combinatorial proof of his result, introducing a new bijection between partitioned maps and thorn trees. Moreover, we obtain a finer result, which takes the type of the permutations into account. Nous étudions le nombre de permutations $\beta$ de $[N]$ avec $m$ cycles telles que $(1 2 \ldots N) \beta^{-1}$ a un seul cycle. Ces nombres apparaissent en tant que coefficients des monômes linéaires des polynômes de Kerov et de Stanley. À l'aide de méthodes algébriques, D. Zagier a trouvé une connexion inattendue avec les nombres de Stirling de taille $N+1$. Nous présentons ici la première preuve combinatoire de son résultat, en introduisant une nouvelle bijection entre des cartes partitionnées et des arbres épineux. De plus, nous obtenons un résultat plus fin, prenant en compte le type des permutations.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Bergfinnur Durhuus ◽  
Søren Eilers

International audience We consider pyramids made of one-dimensional pieces of fixed integer length $a$ and which may have pairwise overlaps of integer length from $1$ to $a$. We give a combinatorial proof that the number of pyramids of size $m$, i.e., consisting of $m$ pieces, equals $\binom{am-1}{m-1}$ for each $a \geq 2$. This generalises a well known result for $a=2$. A bijective correspondence between so-called right (or left) pyramids and $a$-ary trees is pointed out, and it is shown that asymptotically the average width of pyramids equals $\sqrt{\frac{\pi}{2} a(a-1)m}$.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Maria Monks Gillespie ◽  
Jake Levinson

International audience We establish a combinatorial connection between the real geometry and the K-theory of complex Schubert curves Spλ‚q, which are one-dimensional Schubert problems defined with respect to flags osculating the rational normal curve. In a previous paper, the second author showed that the real geometry of these curves is described by the orbits of a map ω on skew tableaux, defined as the commutator of jeu de taquin rectification and promotion. In particular, the real locus of the Schubert curve is naturally a covering space of RP1, with ω as the monodromy operator.We provide a fast, local algorithm for computing ω without rectifying the skew tableau, and show that certain steps in our algorithm are in bijective correspondence with Pechenik and Yong's genomic tableaux, which enumerate the K-theoretic Littlewood-Richardson coefficient associated to the Schubert curve. Using this bijection, we give purely combinatorial proofs of several numerical results involving the K-theory and real geometry of Spλ‚q.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cristian Lenart ◽  
Kirill Zainoulline

International audience An important combinatorial result in equivariant cohomology and $K$-theory Schubert calculus is represented by the formulas of Billey and Graham-Willems for the localization of Schubert classes at torus fixed points. These formulas work uniformly in all Lie types, and are based on the concept of a root polynomial. We define formal root polynomials associated with an arbitrary formal group law (and thus a generalized cohomology theory). We usethese polynomials to simplify the approach of Billey and Graham-Willems, as well as to generalize it to connective $K$-theory and elliptic cohomology. Another result is concerned with defining a Schubert basis in elliptic cohomology (i.e., classes independent of a reduced word), using the Kazhdan-Lusztig basis of the corresponding Hecke algebra. Un résultat combinatoire important dans le calcul de Schubert pour la cohomologie et la $K$-théorie équivariante est représenté par les formules de Billey et Graham-Willems pour la localisation des classes de Schubert aux points fixes du tore. Ces formules sont uniformes pour tous les types de Lie, et sont basés sur le concept d’un polynôme de racines. Nous définissons les polynômes formels de racines associées à une loi arbitraire de groupe formel (et donc à une théorie de cohomologie généralisée). Nous utilisons ces polynômes pour simplifier les preuves de Billey et Graham-Willems, et aussi pour généraliser leurs résultats à la $K$-théorie connective et la cohomologie elliptique. Un autre résultat concerne la définition d’une base de Schubert dans cohomologie elliptique (c’est à dire, des classes indépendantes d’un mot réduit), en utilisant la base de Kazhdan-Lusztig de l’algèbre de Hecke correspondant.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Carsten Lange

International audience Realisations of associahedra can be obtained from the classical permutahedron by removing some of its facets and the set of facets is determined by the diagonals of certain labeled convex planar $n$-gons as shown by Hohlweg and Lange (2007). Ardila, Benedetti, and Doker (2010) expressed polytopes of this type as Minkowski sums and differences of scaled faces of a standard simplex and computed the corresponding coefficients $y_I$ by Möbius inversion from the $z_I$ if tight right-hand sides $z_I$ for all inequalities of the permutahedron are assumed. Given an associahedron of Hohlweg and Lange, we first characterise all tight values $z_I$ in terms of non-crossing diagonals of the associated labeled $n$-gon, simplify the formula of Ardila et al., and characterise the remaining terms combinatorially. Dans un article paru en 2007, Hohlweg et Lange décrivent des associaèdres réalisés à partir du permutoèdre en enlevant certaines de ses facettes. Ces facettes sont déterminées par les diagonales d'une famille de $n$-gones étiquetés. En 2010, Ardila, Benedetti et Doker ont montré que ces polytopes s'expriment par des sommes et différences de Minkowski de faces pondérées d'un simplexe. De plus, si les coefficients $z_I$ des inégalités décrivant l'associaèdre à partir du permutoèdre sont optimaux, alors les coefficients $y_I$ correspondants sont calculés par une inversion de Möbius. Étant donné un tel associaèdre, nous décrivons d'abord les valeurs optimales $z_I$ en termes de diagonales non croisées d'un certain $n$-gone étiqueté, ensuite nous simplifions la formule de Ardila et al. pour finalement décrire combinatoirement les termes restants.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Allen Knutson ◽  
Mathias Lederer

International audience Define the <b>interval rank</b> $r_[i,j] : Gr_k(\mathbb C^n) →\mathbb{N}$ of a k-plane V as the dimension of the orthogonal projection $π _[i,j](V)$ of V to the $(j-i+1)$-dimensional subspace that uses the coordinates $i,i+1,\ldots,j$. By measuring all these ranks, we define the <b>interval rank stratification</b> of the Grassmannian $Gr_k(\mathbb C^n)$. It is finer than the Schubert and Richardson stratifications, and coarser than the positroid stratification studied by Lusztig, Postnikov, and others, so we call the closures of these strata <b>interval positroid varieties</b>. We connect Vakil's "geometric Littlewood-Richardson rule", in which he computed the homology classes of Richardson varieties (Schubert varieties intersected with opposite Schubert varieties), to Erd&odblac;s-Ko-Rado shifting, and show that all of Vakil's varieties are interval positroid varieties. We build on his work in three ways: (1) we extend it to arbitrary interval positroid varieties, (2) we use it to compute in equivariant K-theory, not just homology, and (3) we simplify Vakil's (2+1)-dimensional "checker games" to 2-dimensional diagrams we call "IP pipe dreams". The ring Symm of symmetric functions and its basis of Schur functions is well-known to be very closely related to the ring $\bigoplus_a,b H_*(Gr_a(\mathbb{C}^{(a+b)})$ and its basis of Schubert classes. We extend the latter ring to equivariant K-theory (with respect to a circle action on each $\mathbb{C}^{(a+b)}$, and compute the structure constants of this two-parameter deformation of Symm using the interval positroid technology above.


Sign in / Sign up

Export Citation Format

Share Document