scholarly journals Interval positroid varieties and a deformation of the ring of symmetric functions

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Allen Knutson ◽  
Mathias Lederer

International audience Define the <b>interval rank</b> $r_[i,j] : Gr_k(\mathbb C^n) →\mathbb{N}$ of a k-plane V as the dimension of the orthogonal projection $π _[i,j](V)$ of V to the $(j-i+1)$-dimensional subspace that uses the coordinates $i,i+1,\ldots,j$. By measuring all these ranks, we define the <b>interval rank stratification</b> of the Grassmannian $Gr_k(\mathbb C^n)$. It is finer than the Schubert and Richardson stratifications, and coarser than the positroid stratification studied by Lusztig, Postnikov, and others, so we call the closures of these strata <b>interval positroid varieties</b>. We connect Vakil's "geometric Littlewood-Richardson rule", in which he computed the homology classes of Richardson varieties (Schubert varieties intersected with opposite Schubert varieties), to Erd&odblac;s-Ko-Rado shifting, and show that all of Vakil's varieties are interval positroid varieties. We build on his work in three ways: (1) we extend it to arbitrary interval positroid varieties, (2) we use it to compute in equivariant K-theory, not just homology, and (3) we simplify Vakil's (2+1)-dimensional "checker games" to 2-dimensional diagrams we call "IP pipe dreams". The ring Symm of symmetric functions and its basis of Schur functions is well-known to be very closely related to the ring $\bigoplus_a,b H_*(Gr_a(\mathbb{C}^{(a+b)})$ and its basis of Schubert classes. We extend the latter ring to equivariant K-theory (with respect to a circle action on each $\mathbb{C}^{(a+b)}$, and compute the structure constants of this two-parameter deformation of Symm using the interval positroid technology above.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Pavel Galashin ◽  
Darij Grinberg ◽  
Gaku Liu

International audience The dual stable Grothendieck polynomials are a deformation of the Schur functions, originating in the study of the K-theory of the Grassmannian. We generalize these polynomials by introducing a countable family of additional parameters such that the generalization still defines symmetric functions. We outline two self-contained proofs of this fact, one of which constructs a family of involutions on the set of reverse plane partitions generalizing the Bender-Knuth involutions on semistandard tableaux, whereas the other classifies the structure of reverse plane partitions with entries 1 and 2.


10.37236/2320 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Jason Bandlow ◽  
Jennifer Morse

We study the class $\mathcal C$ of symmetric functions whose coefficients in the Schur basis can be described by generating functions for sets of tableaux with fixed shape.  Included in this class are the Hall-Littlewood polynomials, $k$-Schur functions, and Stanley symmetric functions; functions whose Schur coefficients encode combinatorial, representation theoretic and geometric information. While Schur functions represent the cohomology of the Grassmannian variety of $GL_n$, Grothendieck functions $\{G_\lambda\}$ represent the $K$-theory of the same space.  In this paper, we give a combinatorial description of the coefficients when any element of $\mathcal C$ is expanded in the $G$-basis or the basis dual to $\{G_\lambda\}$.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cristian Lenart ◽  
Kirill Zainoulline

International audience An important combinatorial result in equivariant cohomology and $K$-theory Schubert calculus is represented by the formulas of Billey and Graham-Willems for the localization of Schubert classes at torus fixed points. These formulas work uniformly in all Lie types, and are based on the concept of a root polynomial. We define formal root polynomials associated with an arbitrary formal group law (and thus a generalized cohomology theory). We usethese polynomials to simplify the approach of Billey and Graham-Willems, as well as to generalize it to connective $K$-theory and elliptic cohomology. Another result is concerned with defining a Schubert basis in elliptic cohomology (i.e., classes independent of a reduced word), using the Kazhdan-Lusztig basis of the corresponding Hecke algebra. Un résultat combinatoire important dans le calcul de Schubert pour la cohomologie et la $K$-théorie équivariante est représenté par les formules de Billey et Graham-Willems pour la localisation des classes de Schubert aux points fixes du tore. Ces formules sont uniformes pour tous les types de Lie, et sont basés sur le concept d’un polynôme de racines. Nous définissons les polynômes formels de racines associées à une loi arbitraire de groupe formel (et donc à une théorie de cohomologie généralisée). Nous utilisons ces polynômes pour simplifier les preuves de Billey et Graham-Willems, et aussi pour généraliser leurs résultats à la $K$-théorie connective et la cohomologie elliptique. Un autre résultat concerne la définition d’une base de Schubert dans cohomologie elliptique (c’est à dire, des classes indépendantes d’un mot réduit), en utilisant la base de Kazhdan-Lusztig de l’algèbre de Hecke correspondant.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Avinash J. Dalal ◽  
Jennifer Morse

International audience We give a new description of the Pieri rule for $k$-Schur functions using the Bruhat order on the affine type-$A$ Weyl group. In doing so, we prove a new combinatorial formula for representatives of the Schubert classes for the cohomology of affine Grassmannians. We show how new combinatorics involved in our formulas gives the Kostka-Foulkes polynomials and discuss how this can be applied to study the transition matrices between Hall-Littlewood and $k$-Schur functions. Nous présentons une nouvelle description, issue de l'ordre de Bruhat du groupe de Weyl affine de type $A$, de la règle de Pieri pour les fonctions $k$-Schur. Ce faisant, nous obtenons une nouvelle formule combinatoire pour les représentants des classes de Schubert de la cohomologie des Grassmannienne affines. Nous décrivons aussi comment notre approche permet d'obtenir les polynômes de Kostka-Foulkes et comment elle peut être appliquée à l’étude des matrices de transition entre les polynômes de Hall-Littlewood et les fonctions $k$-Schur.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Anne Schilling ◽  
Mike Zabrocki

International audience We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene. Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c'est-à-dire que nous donnons une formule explicite pour le développement du produit d'une fonction symétrique "somme de puissances'' et d'une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non commutatives k-Schur en termes d'algèbre nilCoxeter introduite par Lam et l'analogue affine des fonctions symétriques non commutatives de Fomin et Greene.


2017 ◽  
Vol 2019 (10) ◽  
pp. 3214-3241 ◽  
Author(s):  
Oliver Pechenik ◽  
Dominic Searles

AbstractWe investigate the long-standing problem of finding a combinatorial rule for the Schubert structure constants in the $K$-theory of flag varieties (in type $A$). The Grothendieck polynomials of A. Lascoux–M.-P. Schützenberger (1982) serve as polynomial representatives for $K$-theoretic Schubert classes; however no positive rule for their multiplication is known in general. We contribute a new basis for polynomials (in $n$ variables) which we call glide polynomials, and give a positive combinatorial formula for the expansion of a Grothendieck polynomial in this basis. We then provide a positive combinatorial Littlewood–Richardson rule for expanding a product of Grothendieck polynomials in the glide basis. Our techniques easily extend to the $\beta$-Grothendieck polynomials of S. Fomin–A. Kirillov (1994), representing classes in connective $K$-theory, and we state our results in this more general context.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Oliver Pechenik ◽  
Alexander Yong

International audience We introduce genomic tableaux, with applications to Schubert calculus. We report a combinatorial rule for structure coefficients in the torus-equivariant $K$-theory of Grassmannians for the basis of Schubert structure sheaves. This rule is positive in the sense of [Anderson-Griffeth-Miller ’11]. We thereby deduce an earlier conjecture of [Thomas-Yong ’13] for the coefficients. Moreover, our rule specializes to give a new Schubert calculus rule in the (non-equivariant) $K$-theory of Grassmannians. From this perspective, we also obtain a new rule for $K$-theoretic Schubert structure constants of maximal orthogonal Grassmannians, and give conjectural bounds on such constants for Lagrangian Grassmannians. Nous introduisons la notion de tableau génomique, pour l’appliquer au calcul de Schubert. Nous énonçons une règle combinatoire pour les coefficients de structure de la $K$-théorie tore-équivariante des grassmanniennes, dans la base définie par les classes des faisceaux structuraux des variétés de Schubert. Cette règle est positive au sens de [Anderson-Griffeth-Miller ’11]. Nous en déduisons une conjecture de [Thomas-Yong ’13]. De plus, notre règle se spécialise en une règle nouvelle pour le calcul de Schubert dans la $K$-théorie (non équivariante) des grassmanniennes. Nous obtenons également une nouvelle règle pour les coefficients de structure de la $K$-théorie des grassmanniennes orthogonales maximales dans la base de Schubert, et nous conjecturons certaines bornes pour ces coefficients dans le cas des grassmanniennes lagrangiennes.


10.37236/5737 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Pavel Galashin ◽  
Darij Grinberg ◽  
Gaku Liu

The dual stable Grothendieck polynomials are a deformation of the Schur functions, originating in the study of the $K$-theory of the Grassmannian. We generalize these polynomials by introducing a countable family of additional parameters, and we prove that this generalization still defines symmetric functions. For this fact, we give two self-contained proofs, one of which constructs a family of involutions on the set of reverse plane partitions generalizing the Bender-Knuth involutions on semistandard tableaux, whereas the other classifies the structure of reverse plane partitions with entries $1$ and $2$.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Kazuya Aokage

International audience A new class of functions is studied. We define the Brauer-Schur functions $B^{(p)}_{\lambda}$ for a prime number $p$, and investigate their properties. We construct a basis for the space of symmetric functions, which consists of products of $p$-Brauer-Schur functions and Schur functions. We will see that the transition matrix from the natural Schur function basis has some interesting numerical properties.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric functions, depending on one parameter. It seems to be an appropriate noncommutative analog of the Hall-Littlewood polynomials. Les fonctions symétriques non commutatives ont de nombreuses propriétés analogues à celles des fonctions symétriques classiques (commutatives). Par exemple, les fonctions de Schur en rubans (analogues de la base de Schur classique) admettent des développements à coefficients positifs dans la base des monômes non commutatifs. La plupart des propriétés classiques s'étendent au cas non commutatif, comme je le montrerai en introduisant une nouvelle famille de fonctions symétriques non commutatives, dépendant d'un paramètre. Cette famille semble être un analogue non commutatif approprié de la famille des polynômes de Hall-Littlewood.


Sign in / Sign up

Export Citation Format

Share Document