scholarly journals On the diameter of random planar graphs

2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Guillaume Chapuy ◽  
Eric Fusy ◽  
Omer Gimenez ◽  
Marc Noy

International audience We show that the diameter $D(G_n)$ of a random (unembedded) labelled connected planar graph with $n$ vertices is asymptotically almost surely of order $n^{1/4}$, in the sense that there exists a constant $c>0$ such that $P(D(G_n) \in (n^{1/4-\epsilon} ,n^{1/4+\epsilon})) \geq 1-\exp (-n^{c\epsilon})$ for $\epsilon$ small enough and $n$ large enough $(n \geq n_0(\epsilon))$. We prove similar statements for rooted $2$-connected and $3$-connected embedded (maps) and unembedded planar graphs.

2013 ◽  
Vol Vol. 15 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Aijun Dong ◽  
Guizhen Liu ◽  
Guojun Li

Graphs and Algorithms International audience Giving a planar graph G, let χ'l(G) and χ''l(G) denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if G is a planar graph without non-induced 7-cycles, then χ'l(G)≤Δ(G)+1 and χ''l(G)≤Δ(G)+2 where Δ(G)≥7.


2014 ◽  
Vol 24 (1) ◽  
pp. 145-178 ◽  
Author(s):  
GUILLAUME CHAPUY ◽  
ÉRIC FUSY ◽  
OMER GIMÉNEZ ◽  
MARC NOY

We show that the diameter diam(Gn) of a random labelled connected planar graph withnvertices is equal ton1/4+o(1), in probability. More precisely, there exists a constantc> 0 such that$$ P(\D(G_n)\in(n^{1/4-\e},n^{1/4+\e}))\geq 1-\exp(-n^{c\e}) $$for ε small enough andn ≥ n0(ε). We prove similar statements for 2-connected and 3-connected planar graphs and maps.


10.37236/635 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Guantao Chen ◽  
Yoshimi Egawa ◽  
Ken-ichi Kawarabayashi ◽  
Bojan Mohar ◽  
Katsuhiro Ota

The toughness of a non-complete graph $G$ is the minimum value of $\frac{|S|}{\omega(G-S)}$ among all separating vertex sets $S\subset V(G)$, where $\omega(G-S)\ge 2$ is the number of components of $G-S$. It is well-known that every $3$-connected planar graph has toughness greater than $1/2$. Related to this property, every $3$-connected planar graph has many good substructures, such as a spanning tree with maximum degree three, a $2$-walk, etc. Realizing that 3-connected planar graphs are essentially the same as 3-connected $K_{3,3}$-minor-free graphs, we consider a generalization to $a$-connected $K_{a,t}$-minor-free graphs, where $3\le a\le t$. We prove that there exists a positive constant $h(a,t)$ such that every $a$-connected $K_{a,t}$-minor-free graph $G$ has toughness at least $h(a,t)$. For the case where $a=3$ and $t$ is odd, we obtain the best possible value for $h(3,t)$. As a corollary it is proved that every such graph of order $n$ contains a cycle of length $\Omega(\log_{h(a,t)} n)$.


2011 ◽  
Vol Vol. 13 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Alexander Grigoriev

Graphs and Algorithms International audience We show that for a planar graph with no g-grid minor there exists a tree-decomposition of width at most 5g - 6. The proof is constructive and simple. The underlying algorithm for the tree-decomposition runs in O(n(2) log n) time.


2011 ◽  
Vol Vol. 13 no. 3 (Combinatorics) ◽  
Author(s):  
Xin Zhang ◽  
Jian-Liang Wu ◽  
Guizhen Liu

Combinatorics International audience A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that each 1-planar graph of minimum degree 6 contains a copy of 4-cycle with all vertices of degree at most 19. In addition, we also show that the complete graph K 4 is light in the family of 1-planar graphs of minimum degree 7, with its height at most 11.


1999 ◽  
Vol 10 (02) ◽  
pp. 195-210 ◽  
Author(s):  
KAZUYUKI MIURA ◽  
DAISHIRO TAKAHASHI ◽  
SHIN-ICHI NAKANO ◽  
TAKAO NISHIZEKI

Given a graph G, a designated vertex r and a natural number k, we wish to find k "independent" spanning trees of G rooted at r, that is, k spanning trees such that the k paths connecting r and any vertex v in the k trees are internally disjoint. In this paper we give a linear-time algorithm to find four independent spanning trees in a 4-connected planar graph.


1996 ◽  
Vol 28 (2) ◽  
pp. 331-331
Author(s):  
Richard Cowan ◽  
Simone Chen

Consider a connected planar graph. A bounded face is said to be of type k, or is called a k-face, if the boundary of that face contains k edges. Under various natural rules for randomly dividing bounded faces by the addition of new edges, we investigate the limiting distribution of face type as the number of divisions increases.


1996 ◽  
Vol 05 (06) ◽  
pp. 877-883 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
TATSUYA TSUKAMOTO

For each odd number n, we describe a regular projection of a planar graph such that every spatial graph obtained by giving it over/under information of crossing points contains a (2, n)-torus knot. We also show that for any spatial graph H, there is a regular projection of a (possibly nonplanar) graph such that every spatial graph obtained from it contains a subgraph that is ambient isotopic to H.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050034
Author(s):  
Yuehua Bu ◽  
Xiaofang Wang

A [Formula: see text]-hued coloring of a graph [Formula: see text] is a proper [Formula: see text]-coloring [Formula: see text] such that [Formula: see text] for any vertex [Formula: see text]. The [Formula: see text]-hued chromatic number of [Formula: see text], written [Formula: see text], is the minimum integer [Formula: see text] such that [Formula: see text] has a [Formula: see text]-hued coloring. In this paper, we show that [Formula: see text] if [Formula: see text] and [Formula: see text] is a planar graph without [Formula: see text]-cycles or if [Formula: see text] is a planar graph without [Formula: see text]-cycles and no [Formula: see text]-cycle is intersect with [Formula: see text]-cycles, [Formula: see text], then [Formula: see text], where [Formula: see text].


10.37236/3476 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Ruy Fabila-Monroy ◽  
David R. Wood

Let $a,b,c,d$ be four vertices in a graph $G$. A $K_4$ minor rooted at $a,b,c,d$ consists of four pairwise-disjoint pairwise-adjacent connected subgraphs of $G$, respectively containing $a,b,c,d$. We characterise precisely when $G$ contains a $K_4$-minor rooted at $a,b,c,d$ by describing six classes of obstructions, which are the edge-maximal graphs containing no $K_4$-minor rooted at $a,b,c,d$. The following two special cases illustrate the full characterisation: (1) A 4-connected non-planar graph contains a $K_4$-minor rooted at $a,b,c,d$ for every choice of $a,b,c,d$. (2) A 3-connected planar graph contains a $K_4$-minor rooted at $a,b,c,d$ if and only if $a,b,c,d$ are not on a single face.


Sign in / Sign up

Export Citation Format

Share Document