scholarly journals Supercharacters, symmetric functions in noncommuting variables (extended abstract)

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Marcelo Aguiar ◽  
Carlos André ◽  
Carolina Benedetti ◽  
Nantel Bergeron ◽  
Zhi Chen ◽  
...  

International audience We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras. Nous montrons que deux structures en apparence bien différentes peuvent être identifiées: les super-caractères, qui sont un outil commode pour faire de l'analyse de Fourier sur le groupe des matrices unipotentes triangulaires supérieures à coefficients dans un corps fini, et l'anneau des fonctions symétriques en variables non-commutatives. Ces deux structures sont des algèbres de Hopf isomorphes. Cette identification permet de traduire dans une structure les dévelopements conçus pour l'autre, et suggère de nombreux exemples dans le domaine nouveau des algèbres de Hopf combinatoires.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Carolina Benedetti ◽  
Joshua Hallam ◽  
John Machacek

International audience We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their $f$-vectors. We also use characters to give a generalization of Stanley’s $(-1)$-color theorem. Nous considérons une algèbre de Hopf de complexes simpliciaux et fournissons une formule sans multiplicité pour son antipode. On obtient ensuite une famille d'algèbres de Hopf combinatoires en définissant une famille de caractères sur cette algèbre de Hopf. Les caractères de ces algèbres de Hopf donnent lieu à des fonctions symétriques qui encode de l’information sur les coloriages du complexe simplicial ainsi que son vecteur-$f$. Nousallons également utiliser des caractères pour donner une généralisation du théorème $(-1)$ de Stanley.


10.37236/5949 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Rebecca Patrias

Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras that can be thought of as K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric functions, noncommutative symmetric functions, and of the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bialgebra structure in all cases that were not yet known but left open the question of finding explicit formulas for the antipode maps. We give combinatorial formulas for the antipode map for the K-theoretic analogues of the symmetric functions, quasisymmetric functions, and noncommutative symmetric functions.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jean-Baptiste Priez

International audience In a first part, we formalize the construction of combinatorial Hopf algebras from plactic-like monoids using polynomial realizations. Thank to this construction we reveal a lattice structure on those combinatorial Hopf algebras. As an application, we construct a new combinatorial Hopf algebra on binary trees with multiplicities and use it to prove a hook length formula for those trees. Dans une première partie, nous formalisons la construction d’algèbres de Hopf combinatoires à partir d’une réalisation polynomiale et de monoïdes de type monoïde plaxique. Grâce à cette construction, nous mettons à jour une structure de treillis sur ces algèbres de Hopf combinatoires. Comme application, nous construisons une nouvelle algèbre de Hopf sur des arbres binaires à multiplicités et on l’utilise pour démontrer une formule des équerressur ces arbres.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jean-Paul Bultel ◽  
Ali Chouria ◽  
Jean-Gabriel Luque ◽  
Olivier Mallet

International audience We give noncommutative versions of the Redfield-Pólya theorem in $\mathrm{WSym}$, the algebra of word symmetric functions, and in other related combinatorial Hopf algebras. Nous donnons des versions non-commutatives du théorème d’énumération de Redfield-Pólya dans $\mathrm{WSym}$, l’algèbre des fonctions symétriques sur les mots, ainsi que dans d’autres algèbres de Hopf combinatoires.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jean-Christophe Aval ◽  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

International audience We show that the # product of binary trees introduced by Aval and Viennot (2008) is in fact defined at the level of the free associative algebra, and can be extended to most of the classical combinatorial Hopf algebras. Nous montrons que le produit # introduit par Aval et Viennot (2008) est défini au niveau de l'algèbre associative libre, et peut être étendu à la plupart des algèbres de Hopf combinatoires classiques.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Le Anh Vinh

International audience We show that if the cardinality of a subset of the $(2k-1)$-dimensional vector space over a finite field with $q$ elements is $\gg q^{2k-1-\frac{1}{ 2k}}$, then it contains a positive proportional of all $k$-simplexes up to congruence. Nous montrons que si la cardinalité d'un sous-ensemble de l'espace vectoriel à $(2k-1)$ dimensions sur un corps fini à $q$ éléments est $\gg q^{2k-1-\frac{1}{ 2k}}$, alors il contient une proportion non-nulle de tous les $k$-simplexes de congruence.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Vincent Pilaud

International audience Generalizing the connection between the classes of the sylvester congruence and the binary trees, we show that the classes of the congruence of the weak order on Sn defined as the transitive closure of the rewriting rule UacV1b1 ···VkbkW ≡k UcaV1b1 ···VkbkW, for letters a < b1,...,bk < c and words U,V1,...,Vk,W on [n], are in bijection with acyclic k-triangulations of the (n + 2k)-gon, or equivalently with acyclic pipe dreams for the permutation (1,...,k,n + k,...,k + 1,n + k + 1,...,n + 2k). It enables us to transport the known lattice and Hopf algebra structures from the congruence classes of ≡k to these acyclic pipe dreams, and to describe the product and coproduct of this algebra in terms of pipe dreams. Moreover, it shows that the fan obtained by coarsening the Coxeter fan according to the classes of ≡k is the normal fan of the corresponding brick polytope


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Nguyen Hoang-Nghia ◽  
Adrian Tanasa ◽  
Christophe Tollu

International audience We endow the set of isomorphism classes of matroids with a new Hopf algebra structure, in which the coproduct is implemented via the combinatorial operations of restriction and deletion. We also initiate the investigation of dendriform coalgebra structures on matroids and introduce a monomial invariant which satisfy a convolution identity with respect to restriction and deletion.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Emmanuel Briand ◽  
Rosa Orellana ◽  
Mercedes Rosas

International audience We show that several of the main structural constants for symmetric functions (Littlewood-Richardsoncoefficients, Kronecker coefficients, plethysm coefficients, and the Kostka–Foulkes polynomials) share invarianceproperties related to the operations of taking complements with respect to rectangles and adding rectangles. Nous montrons que plusieurs des principales constantes de structure de la théorie des fonctions symétriques(les coefficients de Littlewood–Richardson, les coefficients de Kronecker, les coefficients du pléthysme, et les polynômesde Kostka–Foulkes) ont en commun des symétries décrites par des opérations de complémentation dans des rectangleset d’ajout de rectangles pour les partitions qui les étiquettent.


Sign in / Sign up

Export Citation Format

Share Document