scholarly journals Projective subdynamics and universal shifts

2011 ◽  
Vol DMTCS Proceedings vol. AP,... (Proceedings) ◽  
Author(s):  
Pierre Guillon

International audience We study the projective subdynamics of two-dimensional shifts of finite type, which is the set of one-dimensional configurations that appear as columns in them. We prove that a large class of one-dimensional shifts can be obtained as such, namely the effective subshifts which contain positive-entropy sofic subshifts. The proof involves some simple notions of simulation that may be of interest for other constructions. As an example, it allows us to prove the undecidability of all non-trivial properties of projective subdynamics.

2017 ◽  
Vol 38 (5) ◽  
pp. 1894-1922
Author(s):  
RONNIE PAVLOV

In a previous paper [Pavlov, A characterization of topologically completely positive entropy for shifts of finite type. Ergod. Th. & Dynam. Sys.34 (2014), 2054–2065], the author gave a characterization for when a $\mathbb{Z}^{d}$-shift of finite type has no non-trivial subshift factors with zero entropy, a property which we here call zero-dimensional topologically completely positive entropy. In this work, we study the difference between this notion and the more classical topologically completely positive entropy of Blanchard. We show that there are one-dimensional subshifts and two-dimensional shifts of finite type which have zero-dimensional topologically completely positive entropy but not topologically completely positive entropy. In addition, we show that strengthening the hypotheses of the main result of Pavlov [A characterization of topologically completely positive entropy for shifts of finite type. Ergod. Th. & Dynam. Sys.34 (2014), 2054–2065] yields a sufficient condition for a $\mathbb{Z}^{d}$-shift of finite type to have topologically completely positive entropy.


2006 ◽  
Vol 2006 ◽  
pp. 1-13 ◽  
Author(s):  
Djellit Ilhem ◽  
Kara Amel

We concentrate on the dynamics of one-dimensional and two-dimensional cubic maps, it describes how complex behaviors can possibly arise as a system parameter changes. This is a large class of diffeomorphisms which provide a good starting point for understanding polynomial diffeomorphisms with constant Jacobian and equivalent to a composition of generalized Hénon maps. Due to the theoretical and practical difficulties involved in the study, computers will presumably play a role in such efforts.


2013 ◽  
Vol Vol. 15 no. 2 (Automata, Logic and Semantics) ◽  
Author(s):  
Marcella Anselmo ◽  
Maria Madonia

Automata, Logic and Semantics International audience The paper presents a condition necessarily satisfied by (tiling system) recognizable two-dimensional languages. The new recognizability condition is compared with all the other ones known in the literature (namely three conditions), once they are put in a uniform setting: they are stated as bounds on the growth of some complexity functions defined for two-dimensional languages. The gaps between such functions are analyzed and examples are shown that asymptotically separate them. Finally the new recognizability condition results to be the strongest one, while the remaining ones are its particular cases. The problem of deciding whether a two-dimensional language is recognizable is here related to the one of estimating the minimal size of finite automata recognizing a sequence of (one-dimensional) string languages.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250027
Author(s):  
THOMAS G. LUCAS

An overring t of an integral domain R is t-linked over R if for each finitely generated nonzero ideal I of R, (T : IT) ⊋ T implies (R : I) ⊋ R. A t-linkative domain is one for which each overring is t-linked. The notion of a generally t-linkative domain is introduced as a domain R such that [Formula: see text] is t-linkative for each finite type system of ideals [Formula: see text]. In general, R is generally t-linkative if and only if RM is generally t-linkative for each maximal ideal M. All Prüfer domains are generally t-linkative as are all one-dimensional domains and all pseudo-valuation domains. If R is Noetherian and not a field, then it is generally t-linkative if and only if it is one-dimensional. In contrast, an example is given of a two-dimensional Mori domain that is generally t-linkative.


2009 ◽  
Vol 30 (5) ◽  
pp. 1561-1572 ◽  
Author(s):  
MARCUS PIVATO ◽  
REEM YASSAWI

AbstractMany dynamical systems can be naturally represented as Bratteli–Vershik (or adic) systems, which provide an appealing combinatorial description of their dynamics. If an adic system X is linearly recurrent, then we show how to represent X using a two-dimensional subshift of finite type Y; each ‘row’ in a Y-admissible configuration corresponds to an infinite path in the Bratteli diagram of X, and the vertical shift on Y corresponds to the ‘successor’ map of X. Any Y-admissible configuration can then be recoded as the space-time diagram of a one-dimensional cellular automaton Φ; in this way X is embedded in Φ (i.e. X is conjugate to a subsystem of Φ). With this technique, we can embed many odometers, Toeplitz systems, and constant-length substitution systems in one-dimensional cellular automata.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 241-261 ◽  
Author(s):  
P A Krenkel ◽  
R H French

The state-of-the-art of surface water impoundment modeling is examined from the viewpoints of both hydrodynamics and water quality. In the area of hydrodynamics current one dimensional integral energy and two dimensional models are discussed. In the area of water quality, the formulations used for various parameters are presented with a range of values for the associated rate coefficients.


2010 ◽  
Vol 7 ◽  
pp. 90-97
Author(s):  
M.N. Galimzianov ◽  
I.A. Chiglintsev ◽  
U.O. Agisheva ◽  
V.A. Buzina

Formation of gas hydrates under shock wave impact on bubble media (two-dimensional case) The dynamics of plane one-dimensional shock waves applied to the available experimental data for the water–freon media is studied on the base of the theoretical model of the bubble liquid improved with taking into account possible hydrate formation. The scheme of accounting of the bubble crushing in a shock wave that is one of the main factors in the hydrate formation intensification with increasing shock wave amplitude is proposed.


Sign in / Sign up

Export Citation Format

Share Document