scholarly journals Minimum survivable graphs with bounded distance increase

2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Selma Djelloul ◽  
Mekkia Kouider

International audience We study in graphs properties related to fault-tolerance in case a node fails. A graph G is k-self-repairing, where k is a non-negative integer, if after the removal of any vertex no distance in the surviving graph increases by more than k. In the design of interconnection networks such graphs guarantee good fault-tolerance properties. We give upper and lower bounds on the minimum number of edges of a k-self-repairing graph for prescribed k and n, where n is the order of the graph. We prove that the problem of finding, in a k-self-repairing graph, a spanning k-self-repairing subgraph of minimum size is NP-Hard.

2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Tiziana Calamoneri

International audience The L(h, k)-labeling is an assignment of non negative integer labels to the nodes of a graph such that 'close' nodes have labels which differ by at least k, and 'very close' nodes have labels which differ by at least h. The span of an L(h,k)-labeling is the difference between the largest and the smallest assigned label. We study L(h, k)-labelings of cellular, squared and hexagonal grids, seeking those with minimum span for each value of k and h ≥ k. The L(h,k)-labeling problem has been intensively studied in some special cases, i.e. when k=0 (vertex coloring), h=k (vertex coloring the square of the graph) and h=2k (radio- or λ -coloring) but no results are known in the general case for regular grids. In this paper, we completely solve the L(h,k)-labeling problem on regular grids, finding exact values of the span for each value of h and k; only in a small interval we provide different upper and lower bounds.


2018 ◽  
Vol 29 (06) ◽  
pp. 995-1001 ◽  
Author(s):  
Shuli Zhao ◽  
Weihua Yang ◽  
Shurong Zhang ◽  
Liqiong Xu

Fault tolerance is an important issue in interconnection networks, and the traditional edge connectivity is an important measure to evaluate the robustness of an interconnection network. The component edge connectivity is a generalization of the traditional edge connectivity. The [Formula: see text]-component edge connectivity [Formula: see text] of a non-complete graph [Formula: see text] is the minimum number of edges whose deletion results in a graph with at least [Formula: see text] components. Let [Formula: see text] be an integer and [Formula: see text] be the decomposition of [Formula: see text] such that [Formula: see text] and [Formula: see text] for [Formula: see text]. In this note, we determine the [Formula: see text]-component edge connectivity of the hypercube [Formula: see text], [Formula: see text] for [Formula: see text]. Moreover, we classify the corresponding optimal solutions.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1048
Author(s):  
Stefan Moser

Closed-form expressions for the expected logarithm and for arbitrary negative integer moments of a noncentral χ2-distributed random variable are presented in the cases of both even and odd degrees of freedom. Moreover, some basic properties of these expectations are derived and tight upper and lower bounds on them are proposed.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050021
Author(s):  
Ghazale Ghazi ◽  
Freydoon Rahbarnia ◽  
Mostafa Tavakoli

This paper studies the 2-distance chromatic number of some graph product. A coloring of [Formula: see text] is 2-distance if any two vertices at distance at most two from each other get different colors. The minimum number of colors in the 2-distance coloring of [Formula: see text] is the 2-distance chromatic number and denoted by [Formula: see text]. In this paper, we obtain some upper and lower bounds for the 2-distance chromatic number of the rooted product, generalized rooted product, hierarchical product and we determine exact value for the 2-distance chromatic number of the lexicographic product.


1994 ◽  
Vol 3 (3) ◽  
pp. 411-419
Author(s):  
Andrzej Pelc

In group testing, sets of data undergo tests that reveal if a set contains faulty data. Assuming that data items are faulty with given probability and independently of one another, we investigate small families of tests that enable us to locate correctly all faulty data with probability converging to one as the amount of data grows. Upper and lower bounds on the minimum number of such tests are established for different probability functions, and respective location strategies are constructed.


2013 ◽  
Vol Vol. 15 no. 3 (Combinatorics) ◽  
Author(s):  
Crevel Bautista-Santiago ◽  
Javier Cano ◽  
Ruy Fabila-Monroy ◽  
David Flores-Peñaloza ◽  
Hernàn González-Aguilar ◽  
...  

Combinatorics International audience Let P be a set of n points in general position in the plane. A subset I of P is called an island if there exists a convex set C such that I = P \C. In this paper we define the generalized island Johnson graph of P as the graph whose vertex consists of all islands of P of cardinality k, two of which are adjacent if their intersection consists of exactly l elements. We show that for large enough values of n, this graph is connected, and give upper and lower bounds on its diameter.


2016 ◽  
Vol 59 (4) ◽  
pp. 705-720
Author(s):  
Yichao Chen ◽  
Xuluo Yin

AbstractThe thickness of a graph G is the minimum number of planar subgraphs whose union is G. A t-minimal graph is a graph of thickness t that contains no proper subgraph of thickness t. In this paper, upper and lower bounds are obtained for the thickness, t(G ⎕ H), of the Cartesian product of two graphs G and H, in terms of the thickness t(G) and t(H). Furthermore, the thickness of the Cartesian product of two planar graphs and of a t-minimal graph and a planar graph are determined. By using a new planar decomposition of the complete bipartite graph K4k,4k, the thickness of the Cartesian product of two complete bipartite graphs Kn,n and Kn,n is also given for n≠4k + 1.


2004 ◽  
Vol 14 (01n02) ◽  
pp. 105-114 ◽  
Author(s):  
MICHAEL J. COLLINS

Given a finite set of points in Euclidean space, we can ask what is the minimum number of times a piecewise-linear path must change direction in order to pass through all of them. We prove some new upper and lower bounds for the rectilinear version of this problem in which all motion is orthogonal to the coordinate axes. We also consider the more general case of arbitrary directions.


10.37236/5076 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Jean Cardinal ◽  
Stefan Felsner

A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the following:cover the cells of a line arrangement with a minimum number of lines,select a smallest subset of edges in a graph such that for every acyclic orientation, there exists a selected edge that can be flipped without creating a cycle,find a smallest set of incomparable pairs of elements in a poset such that in every linear extension, at least one such pair is consecutive,find a minimum-size fibre in a bipartite poset.We give upper and lower bounds on the worst-case minimum size of a covering by zones in several of those cases. We also consider the computational complexity of those problems, and establish some hardness results.


1976 ◽  
Vol 22 (3) ◽  
pp. 321-331 ◽  
Author(s):  
Marcel Herzog ◽  
K. B. Reid

AbstractWe study the problem of representing a permutation C as a product of a minimum number, fk(C), of cycles of length k. Upper and lower bounds on fk(C) are obtained and exact results are derived for k = 2, 3, 4.


Sign in / Sign up

Export Citation Format

Share Document