scholarly journals On the connectedness and diameter of a geometric Johnson graph

2013 ◽  
Vol Vol. 15 no. 3 (Combinatorics) ◽  
Author(s):  
Crevel Bautista-Santiago ◽  
Javier Cano ◽  
Ruy Fabila-Monroy ◽  
David Flores-Peñaloza ◽  
Hernàn González-Aguilar ◽  
...  

Combinatorics International audience Let P be a set of n points in general position in the plane. A subset I of P is called an island if there exists a convex set C such that I = P \C. In this paper we define the generalized island Johnson graph of P as the graph whose vertex consists of all islands of P of cardinality k, two of which are adjacent if their intersection consists of exactly l elements. We show that for large enough values of n, this graph is connected, and give upper and lower bounds on its diameter.

Author(s):  
Wancang Ma ◽  
David Minda

AbstractLet S(p) be the family of holomorphic functions f defined on the unit disk D, normalized by f(0) = f1(0) – 1 = 0 and univalent in every hyperbolic disk of radius p. Let C(p) be the subfamily consisting of those functions which are convex univalent in every hyperbolic disk of radius p. For p = ∞ these become the classical families S and C of normalized univalent and convex functions, respectively. These families are linearly invariant in the sense of Pommerenke; a natural problem is to calculate the order of these linearly invariant families. More precisely, we give a geometrie proof that C(p) is the universal linearly invariant family of all normalized locally schlicht functions of order at most coth(2p). This gives a purely geometric interpretation for the order of a linearly invariant family. In a related matter, we characterize those locally schlicht functions which map each hyperbolically k-convex subset of D onto a euclidean convex set. Finally, we give upper and lower bounds on the order of the linearly invariant family S(p) and prove that this class is not equal to the universal linearly invariant family of any order.


2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Selma Djelloul ◽  
Mekkia Kouider

International audience We study in graphs properties related to fault-tolerance in case a node fails. A graph G is k-self-repairing, where k is a non-negative integer, if after the removal of any vertex no distance in the surviving graph increases by more than k. In the design of interconnection networks such graphs guarantee good fault-tolerance properties. We give upper and lower bounds on the minimum number of edges of a k-self-repairing graph for prescribed k and n, where n is the order of the graph. We prove that the problem of finding, in a k-self-repairing graph, a spanning k-self-repairing subgraph of minimum size is NP-Hard.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Nicholas R. Beaton ◽  
Filippo Disanto ◽  
Anthony J. Guttmann ◽  
Simone Rinaldi

International audience We study the enumeration of \emphcolumn-convex permutominoes, i.e. column-convex polyominoes defined by a pair of permutations. We provide a direct recursive construction for the column-convex permutominoes of a given size, based on the application of the ECO method and generating trees, which leads to a functional equation. Then we obtain some upper and lower bounds for the number of column-convex permutominoes, and conjecture its asymptotic behavior using numerical analysis. Nous étudions l'énumeration des \emphpermutominos verticalement convexes, c.à.d. les polyominos verticalement convexes définis par un couple de permutations. Nous donnons une construction recursive directe pour ces permutominos de taille fixée, basée sur une application de la méthode ECO et les arbres de génération, qui nous amène à une équat ion fonctionelle. Ensuite nous obtenons des bornes superieures et inférieures pour le nombre de ces permutominos convexes et nous conjecturons leur comportement asymptotique à l'aide d'analyses numériques.


2011 ◽  
Vol Vol. 13 no. 2 (Graph and Algorithms) ◽  
Author(s):  
David R. Wood

Graphs and Algorithms International audience We prove upper and lower bounds on the chromatic number of the square of the cartesian product of trees. The bounds are equal if each tree has even maximum degree.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Tiziana Calamoneri

International audience The L(h, k)-labeling is an assignment of non negative integer labels to the nodes of a graph such that 'close' nodes have labels which differ by at least k, and 'very close' nodes have labels which differ by at least h. The span of an L(h,k)-labeling is the difference between the largest and the smallest assigned label. We study L(h, k)-labelings of cellular, squared and hexagonal grids, seeking those with minimum span for each value of k and h ≥ k. The L(h,k)-labeling problem has been intensively studied in some special cases, i.e. when k=0 (vertex coloring), h=k (vertex coloring the square of the graph) and h=2k (radio- or λ -coloring) but no results are known in the general case for regular grids. In this paper, we completely solve the L(h,k)-labeling problem on regular grids, finding exact values of the span for each value of h and k; only in a small interval we provide different upper and lower bounds.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Benjamin Doerr ◽  
Michael Gnewuch ◽  
Nils Hebbinghaus

International audience For a hypergraph $\mathcal{H} = (V,\mathcal{E})$, its $d$―fold symmetric product is $\Delta^d \mathcal{H} = (V^d,\{ E^d | E \in \mathcal{E} \})$. We give several upper and lower bounds for the $c$-color discrepancy of such products. In particular, we show that the bound $\textrm{disc}(\Delta^d \mathcal{H},2) \leq \textrm{disc}(\mathcal{H},2)$ proven for all $d$ in [B. Doerr, A. Srivastav, and P. Wehr, Discrepancy of Cartesian products of arithmetic progressions, Electron. J. Combin. 11(2004), Research Paper 5, 16 pp.] cannot be extended to more than $c = 2$ colors. In fact, for any $c$ and $d$ such that $c$ does not divide $d!$, there are hypergraphs having arbitrary large discrepancy and $\textrm{disc}(\Delta^d \mathcal{H},c) = \Omega_d(\textrm{disc}(\mathcal{H},c)^d)$. Apart from constant factors (depending on $c$ and $d$), in these cases the symmetric product behaves no better than the general direct product $\mathcal{H}^d$, which satisfies $\textrm{disc}(\mathcal{H}^d,c) = O_{c,d}(\textrm{disc}(\mathcal{H},c)^d)$.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Tämur Ali Khan ◽  
Ralph Neininger

International audience Upper and lower bounds for the tail probabilities of the Wiener index of random binary search trees are given. For upper bounds the moment generating function of the vector of Wiener index and internal path length is estimated. For the lower bounds a tree class with sufficiently large probability and atypically large Wiener index is constructed. The methods are also applicable to related random search trees.


2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Shu-Chiuan Chang ◽  
Lung-Chi Chen

Combinatorics International audience We study the number of connected spanning subgraphs f(d,b) (n) on the generalized Sierpinski gasket SG(d,b) (n) at stage n with dimension d equal to two, three and four for b = 2, and layer b equal to three and four for d = 2. The upper and lower bounds for the asymptotic growth constant, defined as zSG(d,b) = lim(v ->infinity) ln f(d,b)(n)/v where v is the number of vertices, on SG(2,b) (n) with b = 2, 3, 4 are derived in terms of the results at a certain stage. The numerical values of zSG(d,b) are obtained.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Sign in / Sign up

Export Citation Format

Share Document