scholarly journals Recognizing Maximal Unfrozen Graphs with respect to Independent Sets is CO-NP-complete

2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
Nesrine Abbas ◽  
Joseph Culberson ◽  
Lorna Stewart

International audience A graph is unfrozen with respect to k independent set if it has an independent set of size k after the addition of any edge. The problem of recognizing such graphs is known to be NP-complete. A graph is maximal if the addition of one edge means it is no longer unfrozen. We designate the problem of recognizing maximal unfrozen graphs as MAX(U(k-SET)) and show that this problem is CO-NP-complete. This partially fills a gap in known complexity cases of maximal NP-complete problems, and raises some interesting open conjectures discussed in the conclusion.

2005 ◽  
Vol 15 (04) ◽  
pp. 469-479 ◽  
Author(s):  
WENG-LONG CHANG ◽  
MINYI GUO ◽  
JESSE WU

In this paper, it is demonstrated how the DNA (DeoxyriboNucleic Acid) operations presented by Adleman and Lipton can be used to develop the parallel genetic algorithm that solves the independent-set problem. The advantage of the genetic algorithm is the huge parallelism inherent in DNA based computing. Furthermore, this work represents obvious evidence for the ability of DNA based parallel computing to solve NP-complete problems.


2021 ◽  
Vol 28 (2) ◽  
pp. 126-135
Author(s):  
Aleksandr Vasil'evich Tymoshenko ◽  
Rasul Ahmatovich Kochkarov ◽  
Azret Ahmatovich Kochkarov

Modern network systems (unmanned aerial vehicles groups, social networks, network production chains, transport and logistics networks, communication networks, cryptocurrency networks) are distinguished by their multi-element nature and the dynamics of connections between its elements. A number of discrete problems on the construction of optimal substructures of network systems described in the form of various classes of graphs are NP-complete problems. In this case, the variability and dynamism of the structures of network systems leads to an "additional" complication of the search for solutions to discrete optimization problems. At the same time, for some subclasses of dynamical graphs, which are used to model the structures of network systems, conditions for the solvability of a number of NP-complete problems can be distinguished. This subclass of dynamic graphs includes pre-fractal graphs. The article investigates NP-complete problems on pre-fractal graphs: a Hamiltonian cycle, a skeleton with the maximum number of pendant vertices, a monochromatic triangle, a clique, an independent set. The conditions under which for some problems it is possible to obtain an answer about the existence and to construct polynomial (when fixing the number of seed vertices) algorithms for finding solutions are identified.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Martin Charles Golumbic ◽  
Marina Lipshteyn ◽  
Michal Stern

International audience Let $\mathcal{P}$ be a collection of nontrivial simple paths in a tree $T$. The edge intersection graph of $\mathcal{P}$, denoted by EPT($\mathcal{P}$), has vertex set that corresponds to the members of $\mathcal{P}$, and two vertices are joined by an edge if the corresponding members of $\mathcal{P}$ share a common edge in $T$. An undirected graph $G$ is called an edge intersection graph of paths in a tree, if $G = EPT(\mathcal{P})$ for some $\mathcal{P}$ and $T$. The EPT graphs are useful in network applications. Scheduling undirected calls in a tree or assigning wavelengths to virtual connections in an optical tree network are equivalent to coloring its EPT graph. It is known that recognition and coloring of EPT graphs are NP-complete problems. However, the EPT graphs restricted to host trees of vertex degree 3 are precisely the chordal EPT graphs, and therefore can be colored in polynomial time complexity. We prove a new analogous result that weakly chordal EPT graphs are precisely the EPT graphs with host tree restricted to degree 4. This also implies that the coloring of the edge intersection graph of paths in a degree 4 tree is polynomial. We raise a number of intriguing conjectures regarding related families of graphs.


2009 ◽  
Vol Vol. 11 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Raffaele Mosca

Graphs and Algorithms International audience We prove that on the class of (P6,diamond)-free graphs the Maximum-Weight Independent Set problem and the Minimum-Weight Independent Dominating Set problem can be solved in polynomial time.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Shuchao Li ◽  
Huihui Zhang ◽  
Xiaoyan Zhang

Graph Theory International audience A maximal independent set is an independent set that is not a proper subset of any other independent set. Liu [J.Q. Liu, Maximal independent sets of bipartite graphs, J. Graph Theory, 17 (4) (1993) 495-507] determined the largest number of maximal independent sets among all n-vertex bipartite graphs. The corresponding extremal graphs are forests. It is natural and interesting for us to consider this problem on bipartite graphs with cycles. Let \mathscrBₙ (resp. \mathscrBₙ') be the set of all n-vertex bipartite graphs with at least one cycle for even (resp. odd) n. In this paper, the largest number of maximal independent sets of graphs in \mathscrBₙ (resp. \mathscrBₙ') is considered. Among \mathscrBₙ the disconnected graphs with the first-, second-, \ldots, \fracn-22-th largest number of maximal independent sets are characterized, while the connected graphs in \mathscrBₙ having the largest, the second largest number of maximal independent sets are determined. Among \mathscrBₙ' graphs have the largest number of maximal independent sets are identified.


2021 ◽  
Vol 32 (01) ◽  
pp. 93-114
Author(s):  
Vadim E. Levit ◽  
David Tankus

A graph [Formula: see text] is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function [Formula: see text] is defined on its vertices. Then [Formula: see text] is [Formula: see text]well-covered if all maximal independent sets are of the same weight. For every graph [Formula: see text], the set of weight functions [Formula: see text] such that [Formula: see text] is [Formula: see text]-well-covered is a vector space, denoted as WCW(G). Deciding whether an input graph [Formula: see text] is well-covered is co-NP-complete. Therefore, finding WCW(G) is co-NP-hard. A generating subgraph of a graph [Formula: see text] is an induced complete bipartite subgraph [Formula: see text] of [Formula: see text] on vertex sets of bipartition [Formula: see text] and [Formula: see text], such that each of [Formula: see text] and [Formula: see text] is a maximal independent set of [Formula: see text], for some independent set [Formula: see text]. If [Formula: see text] is generating, then [Formula: see text] for every weight function [Formula: see text]. Therefore, generating subgraphs play an important role in finding WCW(G). The decision problem whether a subgraph of an input graph is generating is known to be NP-complete. In this article we prove NP- completeness of the problem for graphs without cycles of length 3 and 5, and for bipartite graphs with girth at least 6. On the other hand, we supply polynomial algorithms for recognizing generating subgraphs and finding WCW(G), when the input graph is bipartite without cycles of length 6. We also present a polynomial algorithm which finds WCW(G) when [Formula: see text] does not contain cycles of lengths 3, 4, 5, and 7.


2011 ◽  
Vol 11 (7&8) ◽  
pp. 638-648
Author(s):  
Vicky Choi

One of the most important questions in studying quantum computation is: whether a quantum computer can solve NP-complete problems more efficiently than a classical computer? In 2000, Farhi, et al. (Science, 292(5516):472--476, 2001) proposed the adiabatic quantum optimization (AQO), a paradigm that directly attacks NP-hard optimization problems. How powerful is AQO? Early on, van-Dam and Vazirani claimed that AQO failed (i.e. would take exponential time) for a family of 3SAT instances they constructed. More recently, Altshuler, et al. (Proc Natl Acad Sci USA, 107(28): 12446--12450, 2010) claimed that AQO failed also for random instances of the NP-complete Exact Cover problem. In this paper, we make clear that all these negative results are only for a specific AQO algorithm. We do so by demonstrating different AQO algorithms for the same problem for which their arguments no longer hold. Whether AQO fails or succeeds for solving the NP-complete problems (either the worst case or the average case) requires further investigation. Our AQO algorithms for Exact Cover and 3SAT are based on the polynomial reductions to the NP-complete Maximum-weight Independent Set (MIS) problem.


2014 ◽  
Vol Vol. 16 no. 2 (PRIMA 2013) ◽  
Author(s):  
Igor Ramos ◽  
Vinícius F. Santos ◽  
Jayme L. Szwarcfiter

Special issue PRIMA 2013 International audience We consider the P₃-convexity on simple undirected graphs, in which a set of vertices S is convex if no vertex outside S has two or more neighbors in S. The convex hull H(S) of a set S is the smallest convex set containing S as a subset. A set S is a convexly independent set if v \not ∈ H(S\setminus \v\) for all v in S. The rank \rk(G) of a graph is the size of the largest convexly independent set. In this paper we consider the complexity of determining \rk(G). We show that the problem is NP-complete even for split or bipartite graphs with small diameter. We also show how to determine \rk(G) in polynomial time for the well structured classes of graphs of trees and threshold graphs. Finally, we give a tight upper bound for \rk(G), which in turn gives a tight upper bound for the Radon number as byproduct, which is the same obtained before by Henning, Rautenbach and Schäfer. Additionally, we briefly show that the problem is NP-complete also in the monophonic convexity.


2019 ◽  
Vol 29 (1) ◽  
pp. 7-14
Author(s):  
Aleksandr N. Maksimenko

Abstract In 1995 T. Matsui considered a special family of 0/1-polytopes with an NP-complete criterion for vertex nonadjacency relation. In 2012 the author demonstrated that all polytopes of this family appear as faces of polytopes associated with the following NP-complete problems: the travelling salesman problem, the 3-satisfiability problem, the knapsack problem, the set covering problem, the partial ordering problem, the cube subgraph problem, and some others. Here it is shown that none of the polytopes of the aforementioned special family (with the exception of the one-dimensional segment) can appear as a face in a polytope associated with the problem of the maximum independent set, the set packing problem, the set partitioning problem, and the problem of 3-assignments.


2003 ◽  
Vol 01 (03) ◽  
pp. 349-357 ◽  
Author(s):  
PAWEL WOCJAN ◽  
THOMAS BETH

We show that the NP-complete problems max cut and independent set can be formulated as the 2-local Hamiltonian problem as defined by Kitaev. The 5-local Hamiltonian problem was the first problem to be shown to be complete for the quantum complexity class QMA — the quantum analog of NP. Subsequently, it was shown that 3-locality is already sufficient for QMA-completeness. It is still not known whether the 2-local Hamiltonian problem is QMA-complete. Therefore it is interesting to determine what problems can be reduced to the 2-local Hamiltonian problem. Kitaev showed that 3-SAT can be formulated as a 3-local Hamiltonian problem. We extend his result by showing that 2-locality is sufficient in order to encompass NP.


Sign in / Sign up

Export Citation Format

Share Document