scholarly journals Complexity aspects of the computation of the rank of a graph

2014 ◽  
Vol Vol. 16 no. 2 (PRIMA 2013) ◽  
Author(s):  
Igor Ramos ◽  
Vinícius F. Santos ◽  
Jayme L. Szwarcfiter

Special issue PRIMA 2013 International audience We consider the P₃-convexity on simple undirected graphs, in which a set of vertices S is convex if no vertex outside S has two or more neighbors in S. The convex hull H(S) of a set S is the smallest convex set containing S as a subset. A set S is a convexly independent set if v \not ∈ H(S\setminus \v\) for all v in S. The rank \rk(G) of a graph is the size of the largest convexly independent set. In this paper we consider the complexity of determining \rk(G). We show that the problem is NP-complete even for split or bipartite graphs with small diameter. We also show how to determine \rk(G) in polynomial time for the well structured classes of graphs of trees and threshold graphs. Finally, we give a tight upper bound for \rk(G), which in turn gives a tight upper bound for the Radon number as byproduct, which is the same obtained before by Henning, Rautenbach and Schäfer. Additionally, we briefly show that the problem is NP-complete also in the monophonic convexity.

2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Gabor Horvath ◽  
Csaba Szabo

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience We prove that the extended equivalence problem is solvable in polynomial time for finite nilpotent groups, and coNP-complete, otherwise. We prove that the extended equation solvability problem is solvable in polynomial time for finite nilpotent groups, and NP-complete, otherwise.


2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
Nesrine Abbas ◽  
Joseph Culberson ◽  
Lorna Stewart

International audience A graph is unfrozen with respect to k independent set if it has an independent set of size k after the addition of any edge. The problem of recognizing such graphs is known to be NP-complete. A graph is maximal if the addition of one edge means it is no longer unfrozen. We designate the problem of recognizing maximal unfrozen graphs as MAX(U(k-SET)) and show that this problem is CO-NP-complete. This partially fills a gap in known complexity cases of maximal NP-complete problems, and raises some interesting open conjectures discussed in the conclusion.


2012 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Robert F. Bailey ◽  
Karen Meagher

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience The metric dimension of a graph Gamma is the least number of vertices in a set with the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. We consider the Grassmann graph G(q)(n, k) (whose vertices are the k-subspaces of F-q(n), and are adjacent if they intersect in a (k 1)-subspace) for k \textgreater= 2. We find an upper bound on its metric dimension, which is equal to the number of 1-dimensional subspaces of F-q(n). We also give a construction of a resolving set of this size in the case where k + 1 divides n, and a related construction in other cases.


2014 ◽  
Vol Vol. 16 no. 2 (PRIMA 2013) ◽  
Author(s):  
Xuegang Chen ◽  
Jing Huang

Special issue PRIMA 2013 International audience As a common generalization of bipartite and split graphs, monopolar graphs are defined in terms of the existence of certain vertex partitions. It has been shown that to determine whether a graph has such a partition is NP-complete for general graphs and polynomial for several classes of graphs. In this paper, we investigate graphs that admit a unique such partition and call them uniquely monopolar-partitionable graphs. By employing a tree trimming technique, we obtain a characterization of uniquely monopolar-partitionable block graphs. Our characterization implies a polynomial time algorithm for recognizing them.


2010 ◽  
Vol Vol. 12 no. 4 ◽  
Author(s):  
Jorge Almeida ◽  
Ondrej Klima

special issue dedicated to the second edition of the conference AutoMathA: from Mathematics to Applications International audience In a recent paper we gave a counterexample to a longstanding conjecture concerning the characterization of regular languages of level 2 in the Straubing-Therien concatenation hierarchy of star-free languages. In that paper a new upper bound for the corresponding pseudovariety of monoids was implicitly given. In this paper we show that it is decidable whether a given monoid belongs to the new upper bound. We also prove that this new upper bound is incomparable with the previous upper bound.


2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Elias Dahlhaus ◽  
Jens Gustedt ◽  
Ross M. Mcconnell

Special issue: Graph Decompositions International audience A complementation operation on a vertex of a digraph changes all outgoing arcs into non-arcs, and outgoing non-arcs into arcs. This defines an equivalence relation where two digraphs are equivalent if one can be obtained from the other by a sequence of such operations. We show that given an adjacency-list representation of a digraph G, many fundamental graph algorithms can be carried out on any member G' of G's equivalence class in O(n+m) time, where m is the number of arcs in G, not the number of arcs in G' . This may have advantages when G' is much larger than G. We use this to generalize to digraphs a simple O(n + m log n) algorithm of McConnell and Spinrad for finding the modular decomposition of undirected graphs. A key step is finding the strongly-connected components of a digraph F in G's equivalence class, where F may have ~(m log n) arcs.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Gerard Jennhwa Chang ◽  
Paul Dorbec ◽  
Hye Kyung Kim ◽  
André Raspaud ◽  
Haichao Wang ◽  
...  

Graph Theory International audience For a positive integer k, a k-tuple dominating set of a graph G is a subset S of V (G) such that |N [v] ∩ S| ≥ k for every vertex v, where N [v] = {v} ∪ {u ∈ V (G) : uv ∈ E(G)}. The upper k-tuple domination number of G, denoted by Γ×k (G), is the maximum cardinality of a minimal k-tuple dominating set of G. In this paper we present an upper bound on Γ×k (G) for r-regular graphs G with r ≥ k, and characterize extremal graphs achieving the upper bound. We also establish an upper bound on Γ×2 (G) for claw-free r-regular graphs. For the algorithmic aspect, we show that the upper k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Francesco M. Malvestuto

Given a connected hypergraph with vertex set V, a convexity space on is a subset of the powerset of V that contains ∅, V, and the singletons; furthermore, is closed under intersection and every set in is connected in . The members of are called convex sets. The convex hull of a subset X of V is the smallest convex set containing X. By a cluster of we mean any nonempty subset of V in which every two vertices are separated by no convex set. We say that a convexity space on is decomposable if it satisfies the following three axioms: (i) the maximal clusters of form an acyclic hypergraph, (ii) every maximal cluster of is a convex set, and (iii) for every nonempty vertex set X, a vertex does not belong to the convex hull of X if and only if it is separated from X by a convex cluster. We prove that a decomposable convexity space on is fully specified by the maximal clusters of in that (1) there is a closed formula which expresses the convex hull of a set in terms of certain convex clusters of and (2) is a convex geometry if and only if the subspaces of induced by maximal clusters of are all convex geometries. Finally, we prove the decomposability of some known convexities in graphs and hypergraphs taken from the literature (such as “monophonic” and “canonical” convexities in hypergraphs and “all-paths” convexity in graphs).


2019 ◽  
Vol 28 (12) ◽  
pp. 1950076
Author(s):  
Thomas Fleming ◽  
Joel Foisy

A directed graph [Formula: see text] is intrinsically linked if every embedding of that graph contains a nonsplit link [Formula: see text], where each component of [Formula: see text] is a consistently oriented cycle in [Formula: see text]. A tournament is a directed graph where each pair of vertices is connected by exactly one directed edge. We consider intrinsic linking and knotting in tournaments, and study the minimum number of vertices required for a tournament to have various intrinsic linking or knotting properties. We produce the following bounds: intrinsically linked ([Formula: see text]), intrinsically knotted ([Formula: see text]), intrinsically 3-linked ([Formula: see text]), intrinsically 4-linked ([Formula: see text]), intrinsically 5-linked ([Formula: see text]), intrinsically [Formula: see text]-linked ([Formula: see text]), intrinsically linked with knotted components ([Formula: see text]), and the disjoint linking property ([Formula: see text]). We also introduce the consistency gap, which measures the difference in the order of a graph required for intrinsic [Formula: see text]-linking in tournaments versus undirected graphs. We conjecture the consistency gap to be nondecreasing in [Formula: see text], and provide an upper bound at each [Formula: see text].


10.37236/429 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Dankelmann ◽  
L. Volkmann

Soares [J. Graph Theory 1992] showed that the well known upper bound $\frac{3}{\delta+1}n+O(1)$ on the diameter of undirected graphs of order $n$ and minimum degree $\delta$ also holds for digraphs, provided they are eulerian. In this paper we investigate if similar bounds can be given for digraphs that are, in some sense, close to being eulerian. In particular we show that a directed graph of order $n$ and minimum degree $\delta$ whose arc set can be partitioned into $s$ trails, where $s\leq \delta-2$, has diameter at most $3 ( \delta+1 - \frac{s}{3})^{-1}n+O(1)$. If $s$ also divides $\delta-2$, then we show the diameter to be at most $3(\delta+1 - \frac{(\delta-2)s}{3(\delta-2)+s} )^{-1}n+O(1)$. The latter bound is sharp, apart from an additive constant. As a corollary we obtain the sharp upper bound $3( \delta+1 - \frac{\delta-2}{3\delta-5})^{-1} n + O(1)$ on the diameter of digraphs that have an eulerian trail.


Sign in / Sign up

Export Citation Format

Share Document