scholarly journals Resonance in orbits of plane partitions

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Kevin Dilks ◽  
Oliver Pechenik ◽  
Jessica Striker

International audience We introduce a new concept of resonance on discrete dynamical systems. Our main result is an equivariant bijection between plane partitions in a box under rowmotion and increasing tableaux under K-promotion, using a generalization of the equivariance of promotion and rowmotion [J. Striker–N. Williams '12] to higher dimensional lattices. This theorem implies new results for K-promotion and new proofs of previous results on plane partitions.

1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Maurice Ginocchio

International audience We develop the bialgebraic structure based on the set of functional graphs, which generalize the case of the forests of rooted trees. We use noncommutative polynomials as generating monomials of the functional graphs, and we introduce circular and arborescent brackets in accordance with the decomposition in connected components of the graph of a mapping of \1, 2, \ldots, n\ in itself as in the frame of the discrete dynamical systems. We give applications fordifferential algebras and algebras of differential operators.


2008 ◽  
Vol Volume 9, 2007 Conference in... ◽  
Author(s):  
Augustin Fruchard ◽  
Reinhard Schäfke

International audience We give a non-exhaustive overview of the problem of bifurcation delay from its appearance in France at the end of the 80ies to the most recent contributions. We present the bifurcation delay for differential equations as well as for discrete dynamical systems. Nous donnons un aperçu non exhaustif du problème du retard à la bifurcation, depuis son apparition en France à la fin des années 1980 jusqu’aux contributions les plus récentes. Le problème et les résultats sont présentés d’une part pour les équations différentielles et d’autre part pour les systèmes dynamiques discrets


2005 ◽  
Vol 15 (02) ◽  
pp. 547-555 ◽  
Author(s):  
YUMING SHI ◽  
GUANRONG CHEN

This paper is concerned with chaotification of discrete dynamical systems in finite-dimensional real spaces, via feedback control techniques. A chaotification theorem for one-dimensional discrete dynamical systems and a chaotification theorem for general higher-dimensional discrete dynamical systems are established, respectively. The controlled systems are proved to be chaotic in the sense of Devaney. In particular, the maps corresponding to the original systems and designed controllers are only required to satisfy some mild assumptions on two very small disjoint closed subsets in the domains of interest. This condition is weaker than those in the existing relevant literature.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Edward G. Belaga ◽  
Maurice Mignotte

International audience Building on theoretical insights and rich experimental data of our preprints, we present here new theoretical and experimental results in three interrelated approaches to the Collatz problem and its generalizations: \emphalgorithmic decidability, random behavior, and Diophantine representation of related discrete dynamical systems, and their \emphcyclic and divergent properties.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Héctor Barge ◽  
José M. R. Sanjurjo

<p style='text-indent:20px;'>In this paper we study generalized Poincaré-Andronov-Hopf bifurcations of discrete dynamical systems. We prove a general result for attractors in <inline-formula><tex-math id="M1">\begin{document}$ n $\end{document}</tex-math></inline-formula>-dimensional manifolds satisfying some suitable conditions. This result allows us to obtain sharper Hopf bifurcation theorems for fixed points in the general case and other attractors in low dimensional manifolds. Topological techniques based on the notion of concentricity of manifolds play a substantial role in the paper.</p>


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 616
Author(s):  
Marek Berezowski ◽  
Marcin Lawnik

Research using chaos theory allows for a better understanding of many phenomena modeled by means of dynamical systems. The appearance of chaos in a given process can lead to very negative effects, e.g., in the construction of bridges or in systems based on chemical reactors. This problem is important, especially when in a given dynamic process there are so-called hidden attractors. In the scientific literature, we can find many works that deal with this issue from both the theoretical and practical points of view. The vast majority of these works concern multidimensional continuous systems. Our work shows these attractors in discrete systems. They can occur in Newton’s recursion and in numerical integration.


1993 ◽  
Vol 03 (02) ◽  
pp. 293-321 ◽  
Author(s):  
JÜRGEN WEITKÄMPER

Real cellular automata (RCA) are time-discrete dynamical systems on ℝN. Like cellular automata they can be obtained from discretizing partial differential equations. Due to their structure RCA are ideally suited to implementation on parallel computers with a large number of processors. In a way similar to the Hénon mapping, the system we consider here embeds the logistic mapping in a system on ℝN, N>1. But in contrast to the Hénon system an RCA in general is not invertible. We present some results about the bifurcation structure of such systems, mostly restricting ourselves, due to the complexity of the problem, to the two-dimensional case. Among others we observe cascades of cusp bifurcations forming generalized crossroad areas and crossroad areas with the flip curves replaced by Hopf bifurcation curves.


Sign in / Sign up

Export Citation Format

Share Document