scholarly journals Determining the Hausdorff Distance Between Trees in Polynomial Time

2021 ◽  
Vol vol. 23, no. 3 (Discrete Algorithms) ◽  
Author(s):  
Aleksander Kelenc

The Hausdorff distance is a relatively new measure of similarity of graphs. The notion of the Hausdorff distance considers a special kind of a common subgraph of the compared graphs and depends on the structural properties outside of the common subgraph. There was no known efficient algorithm for the problem of determining the Hausdorff distance between two trees, and in this paper we present a polynomial-time algorithm for it. The algorithm is recursive and it utilizes the divide and conquer technique. As a subtask it also uses the procedure that is based on the well known graph algorithm of finding the maximum bipartite matching.

10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


2002 ◽  
Vol 50 (8) ◽  
pp. 1935-1941 ◽  
Author(s):  
Dongning Li ◽  
Yong Ching Lim ◽  
Yong Lian ◽  
Jianjian Song

Sign in / Sign up

Export Citation Format

Share Document