scholarly journals Structural Analysis of 8/6 Switched Reluctance Motor Linear and Non-linear Models

Author(s):  
J. D. González-San Román ◽  
J. U. Liceaga-Castro ◽  
I. I. Siller-Alcalá ◽  
E. Campero-Littlewood

This work presents the process of obtaining the simplified model of a switched reluctance motor (SRM) 8/6. Subsequently, the structure of the single-phase model is analyzed, obtaining an exact linearization and zero dynamics of the system. Finally, the model is linearized at an operating point set at 2000 rpm The model includes Coulomb plus viscous friction nonlinearity and an ideal inverter circuit based on bridge converter topology. The simplified and linear models are simulated and compared in the Matlab®/Simulink software in order to validate the design of a classic controller using the linear model.

2021 ◽  
Vol 16 ◽  
pp. 508-518
Author(s):  
J. D. González-San Román ◽  
J. U. Liceaga-Castro ◽  
I. I. Siller-Alcalá ◽  
E. Campero-Littlewood

This article presents the performance tests, by simulation, of a classic PI speed controller applied to a switched reluctance motor (SRM) 8/6. The motor is represented by a linearization of the simplified non-linear model at an operating point set at 2000rpm. The model includes Coulomb plus viscous friction nonlinearity and an ideal inverter circuit. The control system simulations that are carried out are divided into two types: regulation tests and tracking tests, all simulations are carried out in Matlab® / Simulink software.


2005 ◽  
Vol 18 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Zeljko Grbo ◽  
Slobodan Vukosavic ◽  
Emil Levi

Although apparently simpler, the SRM drives are nowadays more expensive than their conventional AC drive counterparts. This is to a great extent caused by the lack of a standardised power electronic converter for SRM drives, which would be available on the market as a single module. A number of attempts were therefore made in recent times to develop novel power electronic converter structures for SRM drives, based on the utilization of a three-phase voltage source inverter (VSI), which is readily available as a single module. This paper follows this line of thought and presents a novel power electronic converter topology for SRM drives, which is entirely based on utilization of standard inverter legs. One of its most important feature is that both magnetizing and demagnetizing voltage may reach the DC-bus voltage level while being contemporarily applied during the conduction overlap in the SRM adjacent phases. At the same time, the voltage stress across the power switches equals the DC-bus voltage. The topology is functional in all operating regimes of the drive. Principle of operation is explained in detail for a three-phase SRM drive and experimental results obtained with a 6/4 switched reluctance motor, are included. Four inverter legs are required in this case. Some considerations, justifying the proposed converter topology from the point of view of the cost, are included.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2526 ◽  
Author(s):  
Xiaoshu Zan ◽  
Ning Wu ◽  
Ruidong Xu ◽  
Mingliang Cui ◽  
Zhikai Jiang ◽  
...  

In order to improve the performance of switched reluctance motor (SRM) systems for photovoltaic (PV) pumps, this paper introduces a new converter topology for SRM with controllable multiple power sources. Only simple switching components need to be added at the front end of the asymmetric half-bridge converter in this topology, which enables the control of multiple power sources. The new PV pump system has four operating modes, which are the PV panel driven mode, battery bank driven mode, dual-source driven mode, and battery charging mode. By adjusting the state of the front-end converter switch, the voltage tracking of PV panel can be achieved, providing a stable bus voltage for the SRM system. By controlling the battery bypass switch, the bus voltage of SRM system can be increased, thereby increasing the system power level. Simulations and experiments based on a four-phase 8/6 SRM demonstrate the effect of the novel converter proposed in this paper.


Sign in / Sign up

Export Citation Format

Share Document