scholarly journals Paleoproterozoic Multi-Stage Magmatism Recoganition of the Western Ordos Block Basement, North China Craton: Geochemistry and Sr-Nd-Pb-Hf Isotopic Data from the Drillhole Basement Granitoids

2020 ◽  
Author(s):  
Chengli Zhang ◽  
Jinglan Luo
2019 ◽  
Vol 156 (9) ◽  
pp. 1565-1586 ◽  
Author(s):  
Chaohui Liu ◽  
Guochun Zhao ◽  
Fulai Liu ◽  
Jia Cai

AbstractThe Bengbu area in the southeastern North China Craton (NCC) consists predominantly of Archean–Palaeoproterozoic (gneissic) granitoids with minor supracrustal rocks (the Fengyang and Wuhe groups). This study presents new zircon laser ablation – inductively coupled plasma – mass spectrometry U–Pb and Lu–Hf isotopic data and trace-element contents for these granitoids, which improve understanding the Archean–Palaeoproterozoic crustal evolution of the NCC. Magmatic zircon U–Pb data reveal that zircons in the (gneissic) granitoids were generated by multi-stage events at 2.93, 2.73, 2.53–2.52 and 2.18–2.13 Ga. Metamorphic zircon U–Pb data obtained from these rocks show two distinct metamorphic ages of 2.49–2.52 and 1.84 Ga, suggesting that the Bengbu area experienced a regional metamorphic event at the end of the Neoarchean Era and encountered reworking by a tectonothermal event associated with the formation of the Palaeoproterozoic Jiao-Liao-Ji Belt. Trace-element compositions of magmatic zircons reveal the highest Ti concentrations (8.08±3.38 ppm) and growth temperatures (718±44 °C) for the zircons aged 2.13–2.17 Ga and an increase in zircon U/Yb ratios from 2.93 Ga (0.34±0.12) through 2.73 Ga (0.96±0.42) to 2.53 Ga (1.05±0.46), but an evident decrease at 2.17–2.13 Ga (0.61±0.40 ppm). Similar Palaeoarchean xenocrystic and detrital zircons with negativeɛHf(t) values, late Mesoarchean magmatic zircons with juvenile Hf isotopic features, early Neoarchean magmatic zircons with model ages of 2.9–3.0 Ga, and two regional metamorphic events at 2.52–2.48 and 1.88–1.80 Ga in the Bengbu and Jiaobei areas indicate a Palaeoarchean–Mesoarchean micro-continent entrained in the Jiao-Liao-Ji Belt at the southeastern NCC.


2013 ◽  
Vol 313 (7) ◽  
pp. 683-711 ◽  
Author(s):  
Y. Wan ◽  
H. Xie ◽  
H. Yang ◽  
Z. Wang ◽  
D. Liu ◽  
...  

2008 ◽  
Vol 308 (3) ◽  
pp. 200-231 ◽  
Author(s):  
D. Liu ◽  
S. A. Wilde ◽  
Y. Wan ◽  
J. Wu ◽  
H. Zhou ◽  
...  

2009 ◽  
Vol 146 (5) ◽  
pp. 701-716 ◽  
Author(s):  
XIAOPING XIA ◽  
MIN SUN ◽  
GUOCHUN ZHAO ◽  
FUYUAN WU ◽  
LIEWEN XIE

AbstractTwo types of metasedimentary rocks occur in the Trans-North China Orogen of the North China Craton. One type consists of highly metamorphosed supracrustal rocks with protoliths of mature cratonic shale, called khondalites, as found in the Lüliang Complex; rocks of the other type are also highly metamorphosed but less mature, as represented by the Wanzi supracrustal assemblage in the Fuping Complex. U–Pb isotopic data for detrital zircons from khondalites show a provenance dominated by 1.9–2.1 Ga Palaeoproterozoic rocks. These detrital zircons display a wide range of εHfvalues from −16.0 to +9.2 and give Hf isotopic model ages mostly around 2.3 Ga. The high positive εHfvalues approach those for the depleted mantle at 2.1 Ga, highlighting a juvenile crustal growth event in Palaeoproterozoic times. Hf isotopic data also imply thatc.2.6 Ga old crustal material was involved in the Palaeoproterozoic magmatic event. These data are similar to those for the khondalitic rocks from the interior of the Western Block of the North China Craton, suggesting a common provenance. In contrast, other metasedimentary rocks in the Trans-North China Orogen, such as the Wanzi supracrustal assemblage in the Fuping Complex, have a source region with both Palaeoproterozoic and Archaean rocks. Their detrital zircon Hf isotopic data indicate reworking of old crustal material and a lack of significant juvenile Palaeoproterozoic magmatic input. These rocks are similar to the coevally deposited meta-sedimentary rocks in the interior of the Eastern Block. We propose that the Lüliang khondalites were deposited on the eastern margin of the Western Block in a passive continental margin environment and were thrust eastward later during collision with the Eastern Block. Other metasedimentary rocks in the Trans-North China Orogen were deposited on the western margin of the Eastern Block in a continental arc environment. Our data support the eastward subduction model for the Palaeoproterozoic tectonic evolution of the North China Craton.


Lithos ◽  
2016 ◽  
Vol 262 ◽  
pp. 44-57 ◽  
Author(s):  
Xiao-Fang He ◽  
M. Santosh ◽  
Kiara Bockmann ◽  
David E. Kelsey ◽  
Martin Hand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document