scholarly journals Chromosome-level genome assembly of the humpback puffer, Tetraodon palembangensis

Gigabyte ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rui Zhang ◽  
Chang Li ◽  
Mengjun Yu ◽  
Xiaoyun Huang ◽  
Mengqi Zhang ◽  
...  

The humpback puffer, Tetraodon palembangensis, is a poisonous freshwater pufferfish species mainly distributed in Southeast Asia (Thailand, Laos, Malaysia and Indonesia). The humpback puffer has many interesting biological features, such as inactivity, tetrodotoxin production and body expansion. Here, we report the first chromosome-level genome assembly of the humpback puffer. The genome size is 362 Mb, with a contig N50 value of ∼1.78 Mb and a scaffold N50 value of ∼15.8 Mb. Based on this genome assembly, ∼61.5 Mb (18.11%) repeat sequences were identified, 19,925 genes were annotated, and the function of 90.01% of these genes could be predicted. Finally, a phylogenetic tree of ten teleost fish species was constructed. This analysis suggests that the humpback puffer and T. nigroviridis share a common ancestor 18.1 million years ago (MYA), and diverged from T. rubripes 45.8 MYA. The humpback puffer genome will be a valuable genomic resource to illustrate possible mechanisms of tetrodotoxin synthesis and tolerance.

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Linlin Zhao ◽  
Shengyong Xu ◽  
Zhiqiang Han ◽  
Qi Liu ◽  
Wensi Ke ◽  
...  

Abstract Argyrosomus japonicus is an economically and ecologically important fish species in the family Sciaenidae with a wide distribution in the world’s oceans. Here, we report a high-quality, chromosome-level genome assembly of A. japonicus based on PacBio and Hi-C sequencing technology. A 673.7-Mb genome containing 282 contigs with an N50 length of 18.4 Mb was obtained based on PacBio long reads. These contigs were further ordered and clustered into 24 chromosome groups based on Hi-C data. In addition, a total of 217.2 Mb (32.24% of the assembled genome) of sequences were identified as repeat elements, and 23,730 protein-coding genes were predicted based on multiple approaches. More than 97% of BUSCO genes were identified in the A. japonicus genome. The high-quality genome assembled in this work not only provides a valuable genomic resource for future population genetics, conservation biology and selective breeding studies of A. japonicus but also lays a solid foundation for the study of Sciaenidae evolution.


Author(s):  
Mingcheng Wang ◽  
Lei Zhang ◽  
Zhiqiang Wang

Abstract Jacaranda mimosifolia D. Don is a deciduous tree widely cultivated in the tropics and subtropics of the world. It is famous for its beautiful blue flowers and pinnate compound leaves. In addition, this tree has great potential in environmental monitoring, soil quality improvement, and medicinal applications. However, a genome resource for J. mimosifolia has not been reported to date. In this study, we constructed a chromosome-level genome assembly of J. mimosifolia using PacBio sequencing, Illumina sequencing, and Hi-C technology. The final genome assembly was ∼707.32 Mb in size, 688.76 Mb (97.36%) of which could be grouped into 18 pseudochromosomes, with contig and scaffold N50 values of 16.77 and 39.98 Mb, respectively. A total of 30,507 protein-coding genes were predicted, 95.17% of which could be functionally annotated. Phylogenetic analysis among 12 plant species confirmed the close genetic relationship between J. mimosifolia and Handroanthus impetiginosus. Gene family clustering revealed 481 unique, 103 significantly expanded, and 16 significantly contracted gene families in the J. mimosifolia genome. This chromosome-level genome assembly of J. mimosifolia will provide a valuable genomic resource for elucidating the genetic bases of the morphological characteristics, adaption evolution, and active compounds biosynthesis of J. mimosifolia.


GigaScience ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Monica M Sheffer ◽  
Anica Hoppe ◽  
Henrik Krehenwinkel ◽  
Gabriele Uhl ◽  
Andreas W Kuss ◽  
...  

Abstract Background Argiope bruennichi, the European wasp spider, has been investigated intensively as a focal species for studies on sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies. Findings We generated, de novo, a 1.67 Gb genome assembly of A. bruennichi using 21.8× Pacific Biosciences sequencing, polished with 19.8× Illumina paired-end sequencing data, and proximity ligation (Hi-C)-based scaffolding. This resulted in an N50 scaffold size of 124 Mb and an N50 contig size of 288 kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high-quality assembly. Conclusions We present the first chromosome-level genome assembly in the order Araneae. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation not only in A. bruennichi but also in arachnids overall, shedding light on questions such as the genomic architecture of traits, whole-genome duplication, and the genomic mechanisms behind silk and venom evolution.


2021 ◽  
Author(s):  
Shengjun Bai ◽  
Hainan Wu ◽  
Jinpeng Zhang ◽  
Zhiliang Pan ◽  
Wei Zhao ◽  
...  

Abstract Populus deltoides has important ecological and economic values, widely used in poplar breeding programs due to its superior characteristics such as rapid growth and resistance to disease. Although the genome sequence of P. deltoides WV94 is available, the assembly is fragmented. Here, we reported an improved chromosome-level assembly of the P. deltoides cultivar I-69 by combining Nanopore sequencing and chromosome conformation capture (Hi-C) technologies. The assembly was 429.3 Mb in size and contained 657 contigs with a contig N50 length of 2.62 Mb. Hi-C scaffolding of the contigs generated 19 chromosome-level sequences, which covered 97.4% (418 Mb) of the total assembly size. Moreover, repetitive sequences annotation showed that 39.28% of the P. deltoides genome was composed of interspersed elements, including retroelements (23.66%), DNA transposons (6.83%), and unclassified elements (8.79%). We also identified a total of 44 362 protein-coding genes in the current P. deltoides assembly. Compared with the previous genome assembly of P. deltoides WV94, the current assembly had some significantly improved qualities: the contig N50 increased 3.5-fold and the proportion of gaps decreased from 3.2% to 0.08%. This high-quality, well-annotated genome assembly provides a reliable genomic resource for identifying genome variants among individuals, mining candidate genes that control growth and wood quality traits, and facilitating further application of genomics-assisted breeding in populations related to P. deltoides.


Author(s):  
Monica M. Sheffer ◽  
Anica Hoppe ◽  
Henrik Krehenwinkel ◽  
Gabriele Uhl ◽  
Andreas W. Kuss ◽  
...  

AbstractBackgroundArgiope bruennichi, the European wasp spider, has been studied intensively as to sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies.FindingsWe generated, de novo, a 1.67Gb genome assembly of A. bruennichi using 21.5X PacBio sequencing, polished with 30X Illumina paired-end sequencing data, and proximity ligation (Hi-C) based scaffolding. This resulted in an N50 scaffold size of 124Mb and an N50 contig size of 288kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high quality of the assembly.ConclusionsWe present the first chromosome-level genome assembly in the class Arachnida. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation in A. bruennichi, as well as on several interesting topics in Arachnids, such as the genomic architecture of traits, whole genome duplication and the genomic mechanisms behind silk and venom evolution.


2019 ◽  
Author(s):  
Yongshuang Xiao ◽  
Zhizhong Xiao ◽  
Daoyuan Ma ◽  
Chenxi Zhao ◽  
Lin Liu ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guifang Lin ◽  
Cheng He ◽  
Jun Zheng ◽  
Dal-Hoe Koo ◽  
Ha Le ◽  
...  

Abstract Background The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies. Results Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression in seeds together with low expression of yellow endosperm 1 (y1) reduces carotenoid accumulation, accounting for the white seed phenotype of A188. Furthermore, transcriptome and epigenome analyses reveal enhanced expression of defense pathways and altered DNA methylation patterns of the embryonic callus. Conclusions The A188 genome assembly provides a high-resolution sequence for a complex genome species and a foundational resource for analyses of genome variation and gene function in maize. The genome, in comparison to B73, contains extensive intra-species structural variations and other genetic differences. Expression and network analyses identify discrete profiles for embryonic callus and other tissues.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Rai ◽  
Hideki Hirakawa ◽  
Ryo Nakabayashi ◽  
Shinji Kikuchi ◽  
Koki Hayashi ◽  
...  

AbstractPlant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes’ evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.


Sign in / Sign up

Export Citation Format

Share Document