scholarly journals A Review Paper on Electric Assisted Steering System for Automobiles

Author(s):  
Prof. Nivedita, Pall Choudhury, Ashutosh Jagdale, Ravi Ghule and Simran Shaikh

Electric Assisted Steering system is an Electric System, which reduces the amount of steering effort by directly applying the output from the electric motor to the steering system.In this system the mechanical link between the steering wheel and road wheels of an automobile are replaced by a control system consisting of sensors, actuators and controllers seem to offer great advantages such as enhanced system performance, simplified construction, design flexibility etc.It offers greater vehicle safety by adapting variable steering ratios to human needs, filtering drive train influences and even adjusting active steering torque in critical situations. In addition, it can make cars even lighter and more fuel efficient when compared to those using hydraulic steering systems. The central electronic elements of today’s steering systems are modern microcontrollers

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhaojian Wang ◽  
Hamid Reza Karimi

We focus on the antivibration controller design problem for electrical power steering (EPS) systems. The EPS system has significant advantages over the traditional hydraulic steering system. However, the improper motor controller design would lead to the steering wheel vibration. Therefore, it is necessary to investigate the antivibration control strategy. For the implementation study, we also present the motor driver design and the software design which is used to monitor the sensors and the control signal. Based on the investigation on the regular assistant algorithm, we summarize the difficulties and problems encountered by the regular algorithm. After that, in order to improve the performance of antivibration and the human-like steering feeling, we propose a new assistant strategy for the EPS. The experiment results of the bench test illustrate the effectiveness and flexibility of the proposed control strategy. Compared with the regular controller, the proposed antivibration control reduces the vibration of the steering wheel a lot.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Jonas Müller

This paper outlines a method for using an active steering system with two electrical actuators (one power-steering actuator and one superposition actuator) in order to manipulate the steering rack position without torque feedback to the steering wheel. To this effect, the power-steering actuator is used to implement a feed-forward control in order to compensate for the inertial effect introduced by the angle superposition. A rudimentary steering system model is used to derive the relevant transfer functions and assemble the control law for the superposition actuator. Experimental results of a research project at the BMW Group are included.


2010 ◽  
Vol 97-101 ◽  
pp. 3308-3313 ◽  
Author(s):  
Hao Chen ◽  
Ya Li Yang ◽  
Li Hua Chen

Electric Power Steering (EPS) is a full electric system, which reduces the amount of steering effort by directly applying the output from an electric motor to the steering system. This research aims at developing EPS boost curve embody into the assist characteristics, improving steer portability and stability. A model for the EPS system has been established, including full vehicle mechanical system, EPS mechanical system, and EPS electric control system. Based on this model, a straight line boost curve was designed and evaluated in this environment to improve the performance of EPS system. Results showed that EPS system with the designed boost curve improved light steering feeling and increased vehicle’s steering stability, and can meet the requirements of steering performance.


2011 ◽  
Vol 110-116 ◽  
pp. 4941-4950
Author(s):  
M. Akhtaruzzaman ◽  
Norrul’ Aine Binti Mohd Razali ◽  
Mohd. Mahbubur Rashid ◽  
Amir Akramin Shafie

This paper describes an experiment on Electric Power Steering (EPS) system of a car. Nowadays EPS system can be considered as a Mechatronics system that reduces the amount of steering effort by directly applying the output of an electric motor to the steering system. In this paper, the constitutions, operational mechanism and control strategies of EPS system are introduced. A potentiometer measures driver input to the steering wheel, both direction and rate of turn. This information is fed into a microcontroller that determines the desired control signals to the motor to produce the necessary torque needed to assist. Although an electro hydraulic power assisted steering system can be used to reduce the fuel consumption, but the maximum benefit can be obtained if electronic system is applied instead of the hydraulic mechanism. The paper shows that a good power steering control technique is achieved by designing a Mechatronics system. The experimental results for the designed EPS system are also analyzed in this paper.


2014 ◽  
Vol 716-717 ◽  
pp. 832-836
Author(s):  
Hui Wang ◽  
Xiao Zhi Wang

This paper uses AMESim software to establish simulation model of SGA170 mine truck full hydraulic steering system, and validates the correctness of the proposed model. Through the joint simulation, vehicle steady circular test, double lane change test and steering wheel angle input test are verified. By changing the initial alignment parameters of front axle, vehicle handling performance are tested through the same simulation test, and yaw velocity, and the curves of lateral acceleration and vehicle roll angle describing vehicle handling stability are obtained, which provides a reference for the design and improvement of the similar mine truck selection.


Author(s):  
Federico Cheli ◽  
Elisabetta Leo ◽  
Edoardo Sabbioni ◽  
Andrea Zuin

A semi-physical model of an hydraulic power steering system is presented in this paper. The proposed model allows to evaluate the wheels dynamic response to steering inputs and to calculate the corresponding reaction torque on the steering-wheel (steering torque). The analyzed steering system increases its stiffness (so that the steering assist level is decreases) with the rise of the vehicle speed. Thus, vehicle maneuverability is improved during parking maneuvers, while at high vehicle speeds, stability and driver perceived steering feel are ensured. A two d.o.f. (steering-wheel and rack-pinion rotations) model has been implemented during this study. The model parameters have been identified through the standard laboratory tests carried out to characterize a steering system, minimizing the difference between the experimental data and the model numerical results. During laboratory tests the hydraulic power system has been characterized first, measuring its stiffness variation as a function of the relative rotation between the steering-wheel and the rack-pinion, and the steering torque as a function of the difference between the delivery and the reversal pressure of the double-acting ram. The complete steering system has been then characterized, suspending the vehicle and placing the wheels on appropriate low-friction plates which permit them to turn; sine and frequency sweep steering input have been applied by a robot and the corresponding reaction torque on the steering-wheel has been measured. Simulations results are in good agreement with the experimental ones for all the performed tests. The steering system model has been integrated into a 14 d.o.f. vehicle model developed by the Mechanical Department of the Politecnico di Milano in order to access its reliability during handling maneuvers. Several simulations have been performed both in open (step-steer, steering pad, etc.) and in closed loop (lane change, double lane change, slalom, etc). Simulation results have shown a reduction of the toe angle due to the deformability of the steering system and a time delay of the wheel angle respect to the cinematic condition introduced by the steering system dynamics. The reaction torque on the steering-wheel has also been calculated during the simulations to access the driver perceived steering feel during the maneuvers.


2013 ◽  
Vol 312 ◽  
pp. 679-684
Author(s):  
Jun Wei Qiao ◽  
Jin Fa Xie ◽  
Zhen Wei Yang

To introduce a new type of electric power steering system, the structure and working principle of the system were introduced, and the models of the car, the tire and the steering system were established. The assist characteristic of the power steering and the ideal steering ratio were also designed and optimized. At last, the simulation tests were carried out. The double planetary wheel mechanism is the most important component of the system. With this mechanism, the system synthesizes the force or motion from the steering wheel and the motor. So the power steering and a small steering ratio can be provided at a low speed, and the steering ratio can be changed initiatively at a medium or high speed. Whats more, the steering ability still exists when there is a fault in the system. The simulation results show this steering system can effectively improve the steering portability, low-speed sensitivity, and the vehicle handling stability.


Steering system is one of the major part of any Automotive design. It is responsible for transferring drivers input to the wheels and gives feedback from road to driver. To design a proper steering system for a formula SAE vehicle, several design parameters needed to be determined. The most important design intent for this system was to provide the driver with a system that did not require excessive steering input force or excessive steering wheel rotation, proper wheel feedback, and adequate wheel steering angle to allow the driver to navigate the tightest corners on the autocross course. This report gives clear idea about how the steering geometry has to be decided for formula student car by using CAD Software Solidworks, and how to select from different possible alternatives. Also, designing of steering components like rack and pinion, shafts and Steering wheel is explained in the report. The overall report can be divided into two objectives. The first is to design the proper steering geometry for the car. The second objective is to design the steering system components, so that the steering effort decreases without compensating the feedback which is obtained from the road. Designing and optimizing of steering system and its components is done considering the rules provided by Formula Bharat 2020, ergonomics, drivers safety, Components Manufacturing, Assembly and performance. The CAD file is entirely developed in Solidworks 2018-19. Static force analysis on components is also performed in Solidworks 2018-19.


2011 ◽  
Vol 97-98 ◽  
pp. 761-764
Author(s):  
Lei Yan Yu ◽  
Zhen Long Wu ◽  
Wan Zhong Zhao

Automobile steer by wire system (SBW) is a novel steering system. Firstly, the linear four degree of freedom dynamics model with steering torque as the input is built. Then the design ,simulation and multi discipline optimization parameterized platform of SBW is built based on Matlab Graphic User Interface, which can design and simulate steering system performances quickly. Effects of different parameters such as velocity, moment inertia of steering wheel and tire cornering stiffness on handling and stabilities are analyzed. Finally parameters are optimized to minimize the response total variance under torque input and improve the response under steering torque input.


Sign in / Sign up

Export Citation Format

Share Document