Influence of Front Wheel Alignment Parameters on Handling Stability of Vehicle Based on Joint Simulation

2014 ◽  
Vol 716-717 ◽  
pp. 832-836
Author(s):  
Hui Wang ◽  
Xiao Zhi Wang

This paper uses AMESim software to establish simulation model of SGA170 mine truck full hydraulic steering system, and validates the correctness of the proposed model. Through the joint simulation, vehicle steady circular test, double lane change test and steering wheel angle input test are verified. By changing the initial alignment parameters of front axle, vehicle handling performance are tested through the same simulation test, and yaw velocity, and the curves of lateral acceleration and vehicle roll angle describing vehicle handling stability are obtained, which provides a reference for the design and improvement of the similar mine truck selection.

Author(s):  
Xiaodong Wu ◽  
Wenqi Li

To improve vehicle handling performance, a variable steering ratio characteristic for steer-by-wire system is designed. The steering ratio is adjusted by a compensating coefficient according to vehicle longitudinal speed and steering wheel angle. To evaluate the performance of vehicle with variable steering ratio, simulations are conducted based on an objective evaluation index, which consists of quadratic cost functions of vehicle lateral deviation, steering angular speed, vehicle lateral acceleration and roll angle. By using the optimized data from the simulation results, a Takagi-Sugeno fuzzy neural network is designed for the steering ratio control. In order to test and validate the proposed controller, a series of comparison experiments are conducted on a closed-loop driver-vehicle system, including lemniscate curve test and double lane-change test. The results demonstrate that compared with a conventional steering system with fixed steering ratio, the proposed system can not only improve steering agility at low speed and steering stability at high speed, but also reduce driver’s workload in critical driving conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhaojian Wang ◽  
Hamid Reza Karimi

We focus on the antivibration controller design problem for electrical power steering (EPS) systems. The EPS system has significant advantages over the traditional hydraulic steering system. However, the improper motor controller design would lead to the steering wheel vibration. Therefore, it is necessary to investigate the antivibration control strategy. For the implementation study, we also present the motor driver design and the software design which is used to monitor the sensors and the control signal. Based on the investigation on the regular assistant algorithm, we summarize the difficulties and problems encountered by the regular algorithm. After that, in order to improve the performance of antivibration and the human-like steering feeling, we propose a new assistant strategy for the EPS. The experiment results of the bench test illustrate the effectiveness and flexibility of the proposed control strategy. Compared with the regular controller, the proposed antivibration control reduces the vibration of the steering wheel a lot.


2014 ◽  
Vol 602-605 ◽  
pp. 316-319
Author(s):  
Shao Song Wan ◽  
Jian Cao ◽  
Cong Yan

In present work, the distribution of electric field strength on the surface of work piece was analyzed through ANSYS and theoretical equation. Moreover, the attractive force acting on particles that disperses in ER polishing fluid was calculated. A series of basic experiments were conducted, it is aimed to find out the effective process parameters on the surface roughness using the work piece as electrode. Vehicle handling directional stability has been more and more important, experiments for steering wheel corner step input response, steering oil tank response property, steady state turning and steering angle of all steering wheels were conducted in this paper, the experimental results show that multi-wheel steering system can fulfill its function very well and reach target angle, it provides a new method for researching for the vehicle handling directional stability.


2014 ◽  
Vol 989-994 ◽  
pp. 3177-3180
Author(s):  
Shao Song Wan ◽  
Jian Cao ◽  
Qun Song Zhu ◽  
Cong Yan

There are many factors that can affect network performance, such as delay, packet loss and capacity utilization. Vehicle handling directional stability has been more and more important, experiments for steering wheel corner step input response, steering oil tank response property, steady state turning and steering angle of all steering wheels were conducted in this paper, the experimental results show that multi-wheel steering system can fulfill its function very well and reach target angle, it provides a new method for researching for the vehicle handling directional stability.


Author(s):  
C. S. Nanda Kumar ◽  
Shankar C. Subramanian

Regenerative braking is applied only at the driven wheels in electric and hybrid vehicles. The presence of brake force only at the driven wheels reduces the lateral traction limit of the corresponding tires. This impacts the vehicle lateral response, particularly while applying the regenerative brake in a turn. In this paper, a detailed study was made on the impact of regenerative brake on the vehicle lateral response in front wheel drive and rear wheel drive configurations on dry and wet asphalt road surfaces. Simulations were done considering a typical set of vehicle parameters with the IPG CarMaker® software for different drive conditions and braking configurations along the same reference track. The steering wheel angle, yaw rate, lateral acceleration, vehicle slip angle, and tire forces were obtained. Further, they were compared against the conventional all wheel friction brake configuration. The regenerative braking configuration that had the most impact on vehicle lateral response was analyzed and response variations were quantified.


Author(s):  
Prof. Nivedita, Pall Choudhury, Ashutosh Jagdale, Ravi Ghule and Simran Shaikh

Electric Assisted Steering system is an Electric System, which reduces the amount of steering effort by directly applying the output from the electric motor to the steering system.In this system the mechanical link between the steering wheel and road wheels of an automobile are replaced by a control system consisting of sensors, actuators and controllers seem to offer great advantages such as enhanced system performance, simplified construction, design flexibility etc.It offers greater vehicle safety by adapting variable steering ratios to human needs, filtering drive train influences and even adjusting active steering torque in critical situations. In addition, it can make cars even lighter and more fuel efficient when compared to those using hydraulic steering systems. The central electronic elements of today’s steering systems are modern microcontrollers


2006 ◽  
Vol 34 (1) ◽  
pp. 64-82 ◽  
Author(s):  
S. L. Haas

Abstract The effects of seven different tire sets on heavy truck steering feel characteristics were demonstrated from objective testing. Also, the steering behavior and vehicle dynamics were modeled in order to determine how well the resulting simulations could rank the steering performance of the tire sets relative to the objective results. The objective testing was performed using a 6×4 tractor with a two-axle flatbed semi-trailer. Measured data included steering wheel torque, steering wheel angle, and lateral acceleration behavior resulting from on-center-type steering tests. In addition, the hydraulic pressure from the power steering system was also measured. The tests consisted of multiple cycles at 0.2 Hz and ±0.2 g. Steering-related performance metrics were selected and calculated based on the interaction between measured parameters. The same test procedure was also applied using an analytical model of a steering system. The input was steering wheel torque, and outputs included the road wheel angles at the steer axle, which were then fed into a commercial vehicle dynamics model providing the vehicle dynamics behavior along with feedback required for the steering model (e.g., king pin moments). Tire loads and slip angles were also provided by the vehicle dynamics model and used as input to a tire model predicting tire force and moment behavior. The related metrics were subsequently computed and compared to the measured results. Effects of the different tire sets on steering characteristics were seen from both the objective and simulation tests. Seven performance metrics were applied in a ranking comparison between measured and modeled results. Correlation of the modeled to measured metrics ranged from R2 values of 0.40 to 0.99 for the seven metrics considered.


1995 ◽  
Vol 23 (2) ◽  
pp. 72-95 ◽  
Author(s):  
C. Schröder ◽  
S. Chung

Abstract This paper summarizes results from a recent program of tire-vehicle system research, using simulation techniques to identify the influence of tire characteristics on the vehicle response functions of yaw rate and lateral acceleration. Tire characteristics such as cornering stiffness, cornering stiffness-wheel load dependency, self-aligning torque, and dynamic tire behavior were varied with respect to a control tire. Computer simulations of vehicles undergoing a steering wheel pulse input were carried out using ADAMS full vehicle models and the Magic Formula tire model. Frequency responses were obtained from these vehicle handling simulations. The Four Parameter Evaluation Method of Lateral Transient Response was used to judge the vehicle handling performance. The influences of tire characteristic properties on the vehicle lateral transient response are explained by this method.


Author(s):  
M.M.M. Salem ◽  
Mina. M Ibrahim ◽  
M.A. Mourad ◽  
K.A. Abd El-Gwwad

In this paper, a linear two degrees of freedom linear bicycle model is proposed to investigate the vehicle handling criterion. The study is based on simulation developed using MATLAB / Simulink to predict the vehicle dynamic stability. Steering angle is given as an input to the mathematical model for various vehicular manoeuvres. This model is validated using a step input which is adjusted to give 0.3g lateral acceleration. The system model is simulated under a typical front wheel steering to examine the highway vehicle prediction output within its manoeuvre. This input is also adjusted to keep lateral acceleration value in steady state region. It is found that changing the vehicle center of gravity (CG) position, vehicle mass, tire cornering stiffness and vehicle speed all have a significant influence on the vehicle dynamic stability.


2013 ◽  
Vol 756-759 ◽  
pp. 4401-4406 ◽  
Author(s):  
Qiang Li ◽  
Chang Gao Xia

Study of traditional assist characteristic cure does not take into account the difference of steering resistance torque caused by different road adhesion coefficient. Vehicle dynamics analysis model is established based on ADAMS/CAR. Simulation of steering wheel torque is realized under different road conditions. Departure from the ideal boost characteristics requirements and combined with ideal steering wheel torque under different speed and lateral acceleration., the article built assist characteristic curve under a certain road conditions. The system can real-time select the assist characteristic curve through identifying the vehicle traveling road conditions by the way of BP neural network. The theory provided a feasible method for the improvement of the EPS system performance.


Sign in / Sign up

Export Citation Format

Share Document