scholarly journals Comparing classic time series models and the LSTM recurrent neural network: An application to S&P 500 stocks

2020 ◽  
Vol 6 (2) ◽  
pp. 137-148
Author(s):  
J. Oliver Muncharaz

In the financial literature, there is great interest in the prediction of stock prices. Stock prediction is necessary for the creation of different investment strategies, both speculative and hedging ones. The application of neural networks has involved a change in the creation of predictive models. In this paper, we analyze the capacity of recurrent neural networks, in particular the long short-term recurrent neural network (LSTM) as opposed to classic time series models such as the Exponential Smooth Time Series (ETS) and the Arima model (ARIMA). These models have been estimated for 284 stocks from the S&P 500 stock market index, comparing the MAE obtained from their predictions. The results obtained confirm a significant reduction in prediction errors when LSTM is applied. These results are consistent with other similar studies applied to stocks included in other stock market indices, as well as other financial assets such as exchange rates.

2021 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Mostafa Abotaleb ◽  
Tatiana Makarovskikh

COVID-19 is one of the biggest challenges that countries face at the present time, as infections and deaths change daily and because this pandemic has a dynamic spread. Our paper considers two tasks. The first one is to develop a system for modeling COVID-19 based on time-series models due to their accuracy in forecasting COVID-19 cases. We developed an “Epidemic. TA” system using R programming for modeling and forecasting COVID-19 cases. This system contains linear (ARIMA and Holt’s model) and non-linear (BATS, TBATS, and SIR) time-series models and neural network auto-regressive models (NNAR), which allows us to obtain the most accurate forecasts of infections, deaths, and vaccination cases. The second task is the implementation of our system to forecast the risk of the third wave of infections in the Russian Federation.


Author(s):  
Jian Zhu ◽  
Haiming Long ◽  
Saihong Liu ◽  
Wenzhi Wu

The financial market is often unpredictable and extremely susceptible to political, economic and other factors. How to achieve accurate predictions of financial time series is very important for scientific research and financial enterprise management. Based on this, this article takes the application of the improved RBF neural network(NN) algorithm in financial time series forecasting as the research object, and explores how to use the improved RBF NN algorithm to predict the stock market price, with a view to reducing investment risks and increasing returns for the majority of stock investors to provide help. This article uses the stock market prices of three listed companies in May 2019 as the data samples for this survey, including 72 training sample data and 21 test sample data. These three stocks were predicted by using the improved RBF NN algorithm Experiments, the experimental results show that the prediction errors of the improved RBF NN algorithm for the three stocks are 2.14%, 0.69% and 1.47%, while the traditional RBF NN algorithm’s prediction errors for the stocks are 5.74%, 2.38% and 11.37%. This shows that the improved algorithm is significantly more accurate and more effective than traditional algorithms. Therefore, the application of the improved RBF NN algorithm in financial time series prediction will be more extensive in the future.


Author(s):  
Hao Hu ◽  
Liqiang Wang ◽  
Guo-Jun Qi

Recent advancements in recurrent neural network (RNN) research have demonstrated the superiority of utilizing multiscale structures in learning temporal representations of time series. Currently, most of multiscale RNNs use fixed scales, which do not comply with the nature of dynamical temporal patterns among sequences. In this paper, we propose Adaptively Scaled Recurrent Neural Networks (ASRNN), a simple but efficient way to handle this problem. Instead of using predefined scales, ASRNNs are able to learn and adjust scales based on different temporal contexts, making them more flexible in modeling multiscale patterns. Compared with other multiscale RNNs, ASRNNs are bestowed upon dynamical scaling capabilities with much simpler structures, and are easy to be integrated with various RNN cells. The experiments on multiple sequence modeling tasks indicate ASRNNs can efficiently adapt scales based on different sequence contexts and yield better performances than baselines without dynamical scaling abilities.


2008 ◽  
Vol 9 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Jeffrey E. Jarrett ◽  
Janne Schilling

In this article we test the random walk hypothesis in the German daily stock prices by means of a unit root test and the development of an ARIMA model for prediction. The results show that the time series of daily stock returns for a stratified random sample of German firms listed on the stock exchange of Frankfurt exhibit unit roots. Also, we find that one may predict changes in the returns to these listed stocks. These time series exhibit properties which are forecast able and provide the intelligent data analysts’ methods to better predict the directive of individual stock returns for listed German firms. The results of this study, though different from most other studies of other stock markets, indicate the Frankfurt stock market behaves in similar ways to North American, other European and Asian markets previously studied in the same manner.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2486
Author(s):  
Tea Šestanović ◽  
Josip Arnerić

This paper investigates whether a specific type of a recurrent neural network, in particular Jordan neural network (JNN), captures the expected inflation better than commonly used feedforward neural networks and traditional parametric time-series models. It also considers competing survey-based and model-based expected inflation towards ex-post actual inflation to find whose predictions are more accurate; predictions from survey respondents or forecasting modelers. Further, it proposes neural network modelling strategy when dealing with nonstationary time-series which exhibit long-memory property and nonlinear dependence with respect to lagged inputs and exogenous inputs as well. Following this strategy, overfitting problem was reduced until no improvement in forecasting accuracy of expected inflation is achieved. The main finding is that JNN predicts inflation in euro zone quite accurately within forecasting horizon of 2 years. Regarding rational expectation principle we have found a set of demand-pull and cost-push inflation characteristics as exogenous inputs which helps in reducing overfitting problem of recurrent neural network even more. The sample includes euro zone aggregated monthly observations from January 2000 to December 2019. The results also confirm that inflation expectations obtained from JNN are consistent with Survey of professional forecasters (SPF), and thus, monetary policy makers can use JNN as a complementary tool in shortcomings of other inflation expectations measures.


2017 ◽  
Vol 2 (4) ◽  
Author(s):  
مهدي صالح عبدالقادر قاسم أغا ◽  
روهات زادة

Author(s):  
Mohammad Pardaz Banu

The stock market is considered to be one of the most highly complex financial systems which consist of various components or stocks, the price of which fluctuates greatly with respect to time. Stock market forecasting involves uncovering the market trends with respect to time. All the stock market investors aim to maximize the returns over their investments and minimize the risks associated. There are time series methods such as AR, MA, SARIMAX developed to predict the stock price but neural network methods such as CNN, LSTM also used to predict the stock price. This research paper describes the prediction of stock market using neural network alogorithms and also few time series methods.


Sign in / Sign up

Export Citation Format

Share Document