A Mathematical Study on Non-Linear MHD Boundary Layer Past a Porous Shrinking Sheet with Suction

Author(s):  
V. Ananthaswamy ◽  
K. Renganathan

In this paper we discuss with magneto hydrodynamic viscous flow due to a shrinking sheet in the presence of suction. We also discuss two dimensional and axisymmetric shrinking for various cases. Using similarity transformation the governing boundary layer equations are converted into its dimensionless form. The transformed simultaneous ordinary differential equations are solved analytically by using Homotopy analysis method. The approximate analytical expression of the dimensionless velocity, dimensionless temperature and dimensionless concentration are derived using the Homotopy analysis method through the guessing solutions. Our analytical results are compared with the previous work and a good agreement is observed.

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
M. M. Rashidi ◽  
E. Momoniat ◽  
B. Rostami

In this study, a steady, incompressible, and laminar-free convective flow of a two-dimensional electrically conducting viscoelastic fluid over a moving stretching surface through a porous medium is considered. The boundary-layer equations are derived by considering Boussinesq and boundary-layer approximations. The nonlinear ordinary differential equations for the momentum and energy equations are obtained and solved analytically by using homotopy analysis method (HAM) with two auxiliary parameters for two classes of visco-elastic fluid (Walters’ liquid B and second-grade fluid). It is clear that by the use of second auxiliary parameter, the straight line region inℏ-curve increases and the convergence accelerates. This research is performed by considering two different boundary conditions: (a) prescribed surface temperature (PST) and (b) prescribed heat flux (PHF). The effect of involved parameters on velocity and temperature is investigated.


Author(s):  
A Kimiaeifar ◽  
G H Bagheri ◽  
M Rahimpour ◽  
M A Mehrabian

In this article, stagnation flow in the vicinity of a shrinking sheet is studied. A similarity transformation is employed to reduce the Navier—Stokes equations to a set of non-linear ordinary differential equations. These equations are then solved analytically by means of the homotopy analysis method (HAM). The results obtained were shown to compare well with the numerical results available in the literature for the same problem. Close agreement between the two sets of results indicates the accuracy of the HAM. The method can predict the flow field in all vertical distances from the sheet, and is also able to control the convergence of the solution. The numerical solution of the similarity equations is also developed and the results are in good agreement with the analytical results based on the HAM.


2008 ◽  
Vol 63 (9) ◽  
pp. 564-570 ◽  
Author(s):  
Saeid Abbasbandy ◽  
Muhammet Yürüsoy ◽  
Mehmet Pakdemirli

A powerful analytic technique for nonlinear problems, the homotopy analysis method (HAM), is employed to give analytic solutions of power-law fluids of second grade. For the so-called secondorder power-law fluids, the explicit analytic solutions are given by recursive formulas with constant coefficients. Also, for the real power-law index in a quite large range an analytic approach is proposed. It is demonstrated that the approximate solution agrees well with the finite difference solution. This provides further evidence that the homotopy analysis method is a powerful tool for finding excellent approximations to nonlinear equations of the power-law fluids of second grade.


2021 ◽  
Vol 88 (1-2) ◽  
pp. 125
Author(s):  
R. Madhusudhan ◽  
Achala L. Nargund ◽  
S. B. Sathyanarayana

We analyse the effect of applied magnetic field on the flow of compressible fluid with an adverse pressure gradient. The governing partial differential equations are solved analytically by Homotopy analysis method (HAM) and numerically by finite difference method. A detailed analysis is carried out for different values of the magnetic parameter, where suction/ injection is imposed at the wall. It is also observed that flow separation is seen in boundary layer region for large injection. HAM is a series solution which consists of a convergence parameter h which is estimated numerically by plotting <em>h</em> curve. Singularities of the solution are identified by Pade approximation.


Author(s):  
S. Alao ◽  
R. A. Oderinu ◽  
F. O. Akinpelu ◽  
E. I. Akinola

This paper investigates a new approach called Homotopy Analysis Decomposition Method (HADM) for solving nonlinear differential equations, the method was developed by incorporating Adomian polynomial into Homotopy Analysis Method. The Adomian polynomial was used to decompose the nonlinear term in the equation then apply the scheme of homotopy analysis method. The accuracy and efficiency of the proposed method was validated by considering algebraically decaying viscous boundary layer  flow due to a moving sheet. Diagonal Pade approximation was used to get the skin friction. The obtained results were presented along with other methods in the literature in tabular form to show the computational efficiency of the new approach. The results were found to agree with those in literature. Owing to its small size of computation, the method is not aected by discretization error as the results are presented in form of polynomials.


Sign in / Sign up

Export Citation Format

Share Document