The Analysis Approach of Boundary Layer Equations of Power-Law Fluids of Second Grade

2008 ◽  
Vol 63 (9) ◽  
pp. 564-570 ◽  
Author(s):  
Saeid Abbasbandy ◽  
Muhammet Yürüsoy ◽  
Mehmet Pakdemirli

A powerful analytic technique for nonlinear problems, the homotopy analysis method (HAM), is employed to give analytic solutions of power-law fluids of second grade. For the so-called secondorder power-law fluids, the explicit analytic solutions are given by recursive formulas with constant coefficients. Also, for the real power-law index in a quite large range an analytic approach is proposed. It is demonstrated that the approximate solution agrees well with the finite difference solution. This provides further evidence that the homotopy analysis method is a powerful tool for finding excellent approximations to nonlinear equations of the power-law fluids of second grade.

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Emran Khoshrouye Ghiasi ◽  
Reza Saleh

AbstractIn this paper, homotopy analysis method (HAM) and variational iteration method (VIM) are utilized to derive the approximate solutions of the Tricomi equation. Afterwards, the HAM is optimized to accelerate the convergence of the series solution by minimizing its square residual error at any order of the approximation. It is found that effect of the optimal values of auxiliary parameter on the convergence of the series solution is not negligible. Furthermore, the present results are found to agree well with those obtained through a closed-form equation available in the literature. To conclude, it is seen that the two are effective to achieve the solution of the partial differential equations.


Author(s):  
V. Ananthaswamy ◽  
K. Renganathan

In this paper we discuss with magneto hydrodynamic viscous flow due to a shrinking sheet in the presence of suction. We also discuss two dimensional and axisymmetric shrinking for various cases. Using similarity transformation the governing boundary layer equations are converted into its dimensionless form. The transformed simultaneous ordinary differential equations are solved analytically by using Homotopy analysis method. The approximate analytical expression of the dimensionless velocity, dimensionless temperature and dimensionless concentration are derived using the Homotopy analysis method through the guessing solutions. Our analytical results are compared with the previous work and a good agreement is observed.


2013 ◽  
Vol 5 (2) ◽  
pp. 222-234
Author(s):  
Fadi Awawdeh ◽  
S. Abbasbandy

AbstractThis paper is concerned with the development of an efficient algorithm for the analytic solutions of nonlinear fractional differential equations. The proposed algorithm Laplace homotopy analysis method (LHAM) is a combined form of the Laplace transform method with the homotopy analysis method. The biggest advantage the LHAM has over the existing standard analytical techniques is that it overcomes the difficulty arising in calculating complicated terms. Moreover, the solution procedure is easier, more effective and straightforward. Numerical examples are examined to demonstrate the accuracy and efficiency of the proposed algorithm.


2008 ◽  
Vol 24 (6) ◽  
pp. 661-670 ◽  
Author(s):  
Mehmet Pakdemirli ◽  
Yiğit Aksoy ◽  
Muhammet Yürüsoy ◽  
Chaudry Masood Khalique

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Hassan A. Zedan ◽  
Eman El Adrous

We introduce two powerful methods to solve the generalized Zakharov equations; one is the homotopy perturbation method and the other is the homotopy analysis method. The homotopy perturbation method is proposed for solving the generalized Zakharov equations. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions; the homotopy analysis method is applied to solve the generalized Zakharov equations. HAM is a strong and easy-to-use analytic tool for nonlinear problems. Computation of the absolute errors between the exact solutions of the GZE equations and the approximate solutions, comparison of the HPM results with those of Adomian’s decomposition method and the HAM results, and computation the absolute errors between the exact solutions of the GZE equations with the HPM solutions and HAM solutions are presented.


2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
Mohammad Mehdi Rashidi ◽  
Abdul Majid Siddiqui ◽  
Mostafa Asadi

We investigated an axisymmetric unsteady two-dimensional flow of nonconducting, incompressible second grade fluid between two circular plates. The similarity transformation is applied to reduce governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE) in dimensionless form. The resulting nonlinear boundary value problem is solved using homotopy analysis method and numerical method. The effects of appropriate dimensionless parameters on the velocity profiles are studied. The total resistance to the upper plate has been calculated.


Sign in / Sign up

Export Citation Format

Share Document