scholarly journals A Constant-time AVX2 Implementation of a Variant of ROLLO

Author(s):  
Tung Chou ◽  
Jin-Han Liou

This paper introduces a key encapsulation mechanism ROLLO+ and presents a constant-time AVX2 implementation of it. ROLLO+ is a variant of ROLLO-I targeting IND-CPA security. The main difference between ROLLO+ and ROLLO-I is that the decoding algorithm of ROLLO+ is adapted from the decoding algorithm of ROLLO-I. Our implementation of ROLLO+-I-128, one of the level-1 parameter sets of ROLLO+, takes 851823 Skylake cycles for key generation, 30361 Skylake cycles for encapsulation, and 673666 Skylake cycles for decapsulation. Compared to the state-of-the-art implementation of ROLLO-I-128 by Aguilar-Melchor et al., which is claimed to be constant-time but actually is not, our implementation achieves a 12.9x speedup for key generation, a 10.6x speedup for encapsulation, and a 14.5x speedup for decapsulation. Compared to the state-of-the-art implementation of the level-1 parameter set of BIKE by Chen, Chou, and Krausz, our key generation time is 1.4x as slow, but our encapsulation time is 3.8x as fast, and our decapsulation time is 2.4x as fast.

Author(s):  
Ming-Shing Chen ◽  
Tung Chou

This paper presents a constant-time implementation of Classic McEliece for ARM Cortex-M4. Specifically, our target platform is stm32f4-Discovery, a development board on which the amount of SRAM is not even large enough to hold the public key of the smallest parameter sets of Classic McEliece. Fortunately, the flash memory is large enough, so we use it to store the public key. For the level-1 parameter sets mceliece348864 and mceliece348864f, our implementation takes 582 199 cycles for encapsulation and 2 706 681 cycles for decapsulation. Compared to the level-1 parameter set of FrodoKEM, our encapsulation time is more than 80 times faster, and our decapsulation time is more than 17 times faster. For the level-3 parameter sets mceliece460896 and mceliece460896f, our implementation takes 1 081 335 cycles for encapsulation and 6 535 186 cycles for decapsulation. In addition, our implementation is also able to carry out key generation for the level-1 parameter sets and decapsulation for level-5 parameter sets on the board.


Author(s):  
Tung Chou ◽  
Matthias J. Kannwischer ◽  
Bo-Yin Yang

We present the first Cortex-M4 implementation of the NISTPQC signature finalist Rainbow. We target the Giant Gecko EFM32GG11B which comes with 512 kB of RAM which can easily accommodate the keys of RainbowI.We present fast constant-time bitsliced F16 multiplication allowing multiplication of 32 field elements in 32 clock cycles. Additionally, we introduce a new way of computing the public map P in the verification procedure allowing vastly faster signature verification.Both the signing and verification procedures of our implementation are by far the fastest among the NISTPQC signature finalists. Signing of rainbowIclassic requires roughly 957 000 clock cycles which is 4× faster than the state of the art Dilithium2 implementation and 45× faster than Falcon-512. Verification needs about 239 000 cycles which is 5× and 2× faster respectively. The cost of signing can be further decreased by 20% when storing the secret key in a bitsliced representation.


Author(s):  
Ming-Shing Chen ◽  
Tung Chou ◽  
Markus Krausz

BIKE is a key encapsulation mechanism that entered the third round of the NIST post-quantum cryptography standardization process. This paper presents two constant-time implementations for BIKE, one tailored for the Intel Haswell and one tailored for the ARM Cortex-M4. Our Haswell implementation is much faster than the avx2 implementation written by the BIKE team: for bikel1, the level-1 parameter set, we achieve a 1.39x speedup for decapsulation (which is the slowest operation) and a 1.33x speedup for the sum of all operations. For bikel3, the level-3 parameter set, we achieve a 1.5x speedup for decapsulation and a 1.46x speedup for the sum of all operations. Our M4 implementation is more than two times faster than the non-constant-time implementation portable written by the BIKE team. The speedups are achieved by both algorithm-level and instruction-level optimizations.


Author(s):  
Erdem Alkim ◽  
Dean Yun-Li Cheng ◽  
Chi-Ming Marvin Chung ◽  
Hülya Evkan ◽  
Leo Wei-Lun Huang ◽  
...  

This paper proposes two different methods to perform NTT-based polynomial multiplication in polynomial rings that do not naturally support such a multiplication. We demonstrate these methods on the NTRU Prime key-encapsulation mechanism (KEM) proposed by Bernstein, Chuengsatiansup, Lange, and Vredendaal, which uses a polynomial ring that is, by design, not amenable to use with NTT. One of our approaches is using Good’s trick and focuses on speed and supporting more than one parameter set with a single implementation. The other approach is using a mixed radix NTT and focuses on the use of smaller multipliers and less memory. On a ARM Cortex-M4 microcontroller, we show that our three NTT-based implementations, one based on Good’s trick and two mixed radix NTTs, provide between 32% and 17% faster polynomial multiplication. For the parameter-set ntrulpr761, this results in between 16% and 9% faster total operations (sum of key generation, encapsulation, and decapsulation) and requires between 15% and 39% less memory than the current state-of-the-art NTRU Prime implementation on this platform, which is using Toom-Cook-based polynomial multiplication.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

1984 ◽  
Vol 29 (5) ◽  
pp. 426-428
Author(s):  
Anthony R. D'Augelli

1991 ◽  
Vol 36 (2) ◽  
pp. 140-140
Author(s):  
John A. Corson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document