scholarly journals Durability Study of Hybrid Fiber Reinforced Concrete

Author(s):  
Srinivasa Rao Naraganti

Sisal has been reported as one of the promising fibers for cement composite applications. The durability of sisal fiber reinforced concrete (SFRC) and steel sisal fiber reinforced concrete (SSFRC) have not been reported. Water absorption, rapid chloride permeability, and acid attack tests are conducted on fibrous cement composites. Steel, polypropylene, and sisal fibers with a total volume of 0.50%, 1.00%, 1.25%, and 1.50% were used. Sisal at a content of 1.50% in SFRC increases the water absorption by 76%, but it is reduced to 30% for SSFRC with 0.2% of sisal content. SFRC and SSFRC show the increased permeability of 1.69% and 2.09% respectively. SFRC experiences the highest volume loss of 6.52%. SSFRC illustrates the resistance to the mass loss and compressive strength loss. In conclusion, untreated sisal in any form is found to be not advantageous for durable fibrous concrete structures.

2021 ◽  
Author(s):  
Imge Nicole Celasun

This research investigated the fresh, mechanical and durability behavior of lightweight self-consolidating fiber reinforced concrete (LWSCFRC) with four different fibers (Polyethylene, Polyvinyl Alcohol, High-Density Polyethylene and Crumb Rubber). Two LWSCFRC mixtures were created for each fiber to analyze the effects of increasing fiber content on fresh state properties: slump flow and density. Mechanical and durability tests included compressive/ flexural strength, rapid chloride permeability and resistance to acid attack. The increase in fiber content decreased the workability of LWSCFRC mixtures except for crumb rubber. Flexural strength of all LWSCFRC specimens was similar compared to their control counterparts, while crumb rubber exhibited the highest compressive strength from all fiber specimens. Addition of fibers resulted in good resistance against chloride ion penetration but compressive strength of specimens in a 5% sulfuric acid solution decreased. Overall, 1.0% Crumb Rubber performed better in fresh, mechanical and durability testing from all the fiber specimens.


2021 ◽  
Author(s):  
Imge Nicole Celasun

This research investigated the fresh, mechanical and durability behavior of lightweight self-consolidating fiber reinforced concrete (LWSCFRC) with four different fibers (Polyethylene, Polyvinyl Alcohol, High-Density Polyethylene and Crumb Rubber). Two LWSCFRC mixtures were created for each fiber to analyze the effects of increasing fiber content on fresh state properties: slump flow and density. Mechanical and durability tests included compressive/ flexural strength, rapid chloride permeability and resistance to acid attack. The increase in fiber content decreased the workability of LWSCFRC mixtures except for crumb rubber. Flexural strength of all LWSCFRC specimens was similar compared to their control counterparts, while crumb rubber exhibited the highest compressive strength from all fiber specimens. Addition of fibers resulted in good resistance against chloride ion penetration but compressive strength of specimens in a 5% sulfuric acid solution decreased. Overall, 1.0% Crumb Rubber performed better in fresh, mechanical and durability testing from all the fiber specimens.


2018 ◽  
Vol 7 (2) ◽  
pp. 742
Author(s):  
Sabapathy Y K ◽  
Ramya Sajeevan ◽  
Rekha J ◽  
Vishal V ◽  
Sabarish S ◽  
...  

Concrete is typically a brittle material which is prone to damage when subjected to heavy impact loads. To overcome this weakness, concrete is reinforced with fibers as fibers are effective in withstanding heavy impact loads. The main objective of this experimental investigation is to study the influence of sisal fibers in concrete under impact load. The impact specimens are prepared using three grades of concrete- M20, M30 and M40 with five varying percentage of fibers- 0%, 0.5%, 1%, 1.5% and 2%. The mix designs of the respective grades of concrete are made as per the Indian standards. The specimens after curing for 28 days were subjected to impact loads using the standard drop weight impact machine confining to ASTM standards. Also cube and cylinder specimens are prepared and tested to ascertain the compressive and tensile strength of the sisal fiber reinforced concrete. The results indicated that the sisal fibers are effective in increasing the impact strength of concrete.


Fibers ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 53 ◽  
Author(s):  
Abass Okeola ◽  
Silvester Abuodha ◽  
John Mwero

Concrete is a very popular material in the construction industry—it is, however, susceptible to quasi-brittle failure and restricted energy absorption after yielding. The incorporation of short discrete fibers has shown great promise in addressing these shortfalls. A natural fiber such as sisal is renewable, cheap, and easily available. It has also exhibited good tensile strength and can significantly improve the performance of concrete. In this study, the physical and mechanical properties of sisal fiber-reinforced concrete were reported. Sisal fibers were added in the mix at percentages of 0.5%, 1.0%, 1.5%, and 2.0% by weight of cement. Physical properties measured are workability, water absorption, and density while mechanical properties reported are compression strength, split tensile strength, and static modulus of elasticity. The computed modulus of elasticity of sisal fiber-reinforced concrete was compared with predicted values in some common design codes. From the study, it was concluded that sisal fiber can enhance the split tensile strength and Young’s modulus of concrete but cannot improve its workability, water absorption, and compressive strength.


2015 ◽  
Vol 732 ◽  
pp. 377-380 ◽  
Author(s):  
Jindřich Fornůsek ◽  
Michal Tvarog

This paper deals about behavior of fiber reinforced cement composite in dependence on the casting direction. Almost fifty concrete prisms of size 400 x 100 x 100 mm were cast; half of these were fiber reinforced concrete (FRC) and the other half was ultra-high performance fiber reinforced concrete (UHPFRC). Approximately one half of both mixtures was cast in horizontal direction and the other half vertically. It was found that the specific fracture energy of horizontally cast prisms was approximately 4,5 times larger for both materials than the vertically cast ones. Ultimate loads of FRC were very similar for both casting directions. Peak loads of the horizontally cast UHPFRC prisms were approximately 3 times larger than the vertically cast ones. This research confirmed that there is significant influence of the casting direction on the fiber reinforced concrete characteristics.


2019 ◽  
Vol 8 (3) ◽  
pp. 1025-1028

The present work is enhancement of near surface characteristics for hybrid fiber reinforced concrete (aspect ratio 40+100). Here in this research work an attempt has made to study water absorption values for different types of fiber reinforced concrete, which are having different aspect ratios like 40, 100 and 40+100. Concrete mix along with fibers are casted and cured for 28days. Both water absorption test and sorptivity tests carried on hardened concrete. The main objective is to check variation in absorption values due to addition of different types of fibers. Here totally five different types of fibers are considered like steel fiber, Galvanized iron fibres, High density polyethylene fibres, waste plastic fiber and polypropylene fibers Experimental investigation shows that except polyprolene hybrid mix concrete other hybrid mixes has showed good results. But as compared to mono fiber reinforced concrete hybrid fiber reinforced concrete has showed better results. This research was aimed to provide benchmark for future research works on near surface characteristics of hybrid fiber reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document