scholarly journals Spectrum Sensing Detection for Non-Stationary Primary User Signals Over Dynamic Threshold Energy Detection in Cognitive Radio System

Author(s):  
Akil H. Wotaif ◽  
Bashar J. Hamza ◽  
Wasan Kadhim Saad
2021 ◽  
Vol 10 (4) ◽  
pp. 2046-2054
Author(s):  
Mohammed Mehdi Saleh ◽  
Ahmed A. Abbas ◽  
Ahmed Hammoodi

Due to the rapid increase in wireless applications and the number of users, spectrum scarcity, energy consumption and latency issues will emerge, notably in the fifth generation (5G) system. Cognitive radio (CR) has emerged as the primary technology to address these challenges, allowing opportunist spectrum access as well as the ability to analyze, observe, and learn how to respond to environmental 5G conditions. The CR has the ability to sense the spectrum and detect empty bands in order to use underutilized frequency bands without causing unwanted interference with legacy networks. In this paper, we presented a spectrum sensing algorithm based on energy detection that allows secondary user SU to transmit asynchronously with primary user PU without causing harmful interference. This algorithm reduced the sensing time required to scan the whole frequency band by dividing it into n sub-bands that are all scanned at the same time. Also, this algorithm allows cognitive radio networks (CRN) nodes to select their operating band without requiring cooperation with licensed users. According to the BER, secondary users have better performance compared with primary users.


2020 ◽  
Vol 3 (3) ◽  
pp. 1-11
Author(s):  
Muntaser S. Falih ◽  
Hikmat N. Abdullah

In this paper a new blind energy detection spectrum-sensing method based on Discreet Wavelet Transform (DWT) is proposed. The method utilizes the DWT sub-band to collects the received energy. The proposed method recognizes the Primary User (PU) signal from noise only signal using the differences in the collected energy in first and last sub-bands of one level DWT. The simulation results show that the proposed method achieves improved detection probability especially at low Signal to Noise Ratio (SNR) compared to Conventional Energy Detector (CED). The results also show that the proposed method has shorter sensing time and less Energy Consumption (EC) compared to CED due to using small number of processed sample. Therefore, this method is suitable for Cognitive Radio (CR) applications where only limited energy like device battery is available.


Sign in / Sign up

Export Citation Format

Share Document