scholarly journals Capacity Analysis of a Full Duplex Device-to-Device Wireless Network using Voronoi diagrams and Distance Distributions

2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Okechukwu E. Ochia ◽  
Elvis Obi

Full duplex (FD) and Device-to-Device (D2D) communication are two revolutionary protocols that have enabled better spectrum utilization and more reliable data delivery in wireless networks.  In addition, stochastic geometry tools have become necessary to characterize the randomness in the present networks with respect to the irregular architecture and the competing access schemes. This work analyses the performance of a mobile network comprising nodes which are randomly distributed in a square area, which are equipped with FD radios, and can communicate using D2D. The base station (BS) nodes and user nodes in the network are modelled as points of a homogenous binomial point process (BPP) and a homogeneous Poisson point process (PPP) respectively. The network area is tessellated into cells using Voronoi diagrams which approximates to a nearest BS-to-user node association policy. The user nodes can cache popular file objects which are available in a centralized server in the network and other nodes in proximity can request for such objects and receive them using D2D. Using well known distance distribution expressions and stochastic geometry analysis, the distribution of the signal-to-interference ratio (SIR), the D2D and FD collaboration probabilities and the average coverage probability are derived. It is shown that a network-wide quality of service is maintained without additional spectrum utilization when the user nodes can be intelligently tuned to transmit and receive using FD and/or D2D modes. Keywords— Device-to-Device Communication, Full Duplex Communication, stochastic geometry analysis, Voronoi diagrams, Distance    Distributions

2019 ◽  
Vol 18 (6) ◽  
pp. 2977-2988 ◽  
Author(s):  
Saeede Enayati ◽  
Hamid Saeedi ◽  
Hossein Pishro-Nik ◽  
Halim Yanikomeroglu

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhen Yang ◽  
Titi Liu ◽  
Guobin Chen

In spectrum sharing cognitive radio networks, unauthorized users (secondary users) are allowed to use the spectrum of authorized users (primary users) to improve spectrum utilization. Due to limited spectrum resources, how to formulate a reasonable spectrum allocation scheme is very important. As a mathematical analysis tool, game theory can solve the problem of resource allocation well. In recent years, it has been applied to the research of resource allocation in spectrum sharing networks by some literatures. In a cellular network consisting of multiple cellular users and full-duplex end-to-end communication users D2D (device-to-device), the self-interference caused by full-duplex communication and the interference caused by the D2D users to the cellular users will significantly reduce system throughput. In order to reduce the interference in the network, this paper introduces a power control algorithm based on Stackelberg game, which sets the cellular users and D2D users as the leaders and followers, respectively. The cellular users and the D2D users compete with each other to minimize the cost, and we propose new utility functions. We build an optimization problem under the outage probability constraint and power constraint and the transmission power of the users is obtained by using the Lagrangian dual decomposition method. The simulation results show that the proposed game algorithm improves network performance compared with other existing schemes.


Author(s):  
Hanan H. Hussein ◽  
Hussein A. Elsayed ◽  
Sherine M. Abd El-kader

5G is the next step in the evolution of mobile communication. The evolving 5G cellular wireless networks are envisioned to provide higher data rates, enhanced end-user quality-of-experience (QoE), reduced end-to-end latency, and lower energy consumption. Device to device (D2D) is one of the key technologies provided to enhance 5G performance. Direct communication between two devices without involvement of any central point (i.e., base station) is defined as device to device (D2D) communication. It is a recommended technique to enhance the network performance of 5G in terms of energy efficiency, throughput, latency, and spectrum utilization. In this chapter, the authors provide a detailed survey on the integration of D2D communication into cellular network especially 5G network. The survey highlights the potential advantages; classifications and application for D2D technology have been indicated. Main D2D standards have been presented. Finally, the chapter addresses main topics that could be related to D2D and indicates all major possible challenges that face most researchers.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mhd Nour Hindia ◽  
Moubachir Madani Fadoul ◽  
Tharek Abdul Rahman ◽  
Iraj Sadegh Amiri

Cellular networks are extensively modeled by placing the base stations on a grid, with relays and destinations being placed deterministically. These networks are idealized for not considering the interferences when evaluating the coverage/outage and capacity. Realistic models that can overcome such limitation are desirable. Specifically, in a cellular downlink environment, the full-duplex (FD) relaying and destination are prone to interferences from unintended sources and relays. However, this paper considered two-hop cellular network in which the mobile nodes aid the sources by relaying the signal to the dead zone. Further, we model the locations of the sources, relays, and destination nodes as a point process on the plane and analyze the performance of two different hops in the downlink. Then, we obtain the success probability and the ergodic capacity of the two-hop MIMO relay scheme, accounting for the interference from all other adjacent cells. We deploy stochastic geometry and point process theory to rigorously analyze the two-hop scheme with/without interference cancellation. These attained expressions are amenable to numerical evaluation and are corroborated by simulation results.


Author(s):  
Bartłomiej Błaszczyszyn ◽  
Martin Haenggi ◽  
Paul Keeler ◽  
Sayandev Mukherjee

2021 ◽  
Vol E104.B (1) ◽  
pp. 118-127
Author(s):  
Yuxiang FU ◽  
Koji YAMAMOTO ◽  
Yusuke KODA ◽  
Takayuki NISHIO ◽  
Masahiro MORIKURA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document