scholarly journals Existence and Uniqueness of the Mild Solution of an Abstract Semilinear Fractional Differential Equation with State Dependent Nonlocal Condition

2021 ◽  
Vol 45 (6) ◽  
pp. 909-923
Author(s):  
MOHAMED A. E. HERZALLAH ◽  
◽  
ASHRAF H. A. RADWAN

The purpose of this paper is to investigate the existence and uniqueness of mild solutions to a semilinear Cauchy problem for an abstract fractional differential equation with state dependent nonlocal condition. Continuous dependence of solutions on initial conditions and local ????-approximate mild solution of the considered problem will be discussed.

2021 ◽  
Vol 5 (3) ◽  
pp. 66
Author(s):  
Azmat Ullah Khan Niazi ◽  
Jiawei He ◽  
Ramsha Shafqat ◽  
Bilal Ahmed

This paper concerns with the existence and uniqueness of the Cauchy problem for a system of fuzzy fractional differential equation with Caputo derivative of order q∈(1,2], 0cD0+qu(t)=λu(t)⊕f(t,u(t))⊕B(t)C(t),t∈[0,T] with initial conditions u(0)=u0,u′(0)=u1. Moreover, by using direct analytic methods, the Eq–Ulam-type results are also presented. In addition, several examples are given which show the applicability of fuzzy fractional differential equations.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2018 ◽  
Vol 21 (1) ◽  
pp. 200-219 ◽  
Author(s):  
Fatma Al-Musalhi ◽  
Nasser Al-Salti ◽  
Erkinjon Karimov

AbstractDirect and inverse source problems of a fractional diffusion equation with regularized Caputo-like counterpart of a hyper-Bessel differential operator are considered. Solutions to these problems are constructed based on appropriate eigenfunction expansions and results on existence and uniqueness are established. To solve the resultant equations, a solution to such kind of non-homogeneous fractional differential equation is also presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hoa Ngo Van ◽  
Vu Ho

The aim of the paper is to consider the existence and uniqueness of solution of the fractional differential equation with a positive constant coefficient under Hilfer fractional derivative by using the fixed-point theorem. We also prove the bounded and continuous dependence on the initial conditions of solution. Besides, Hyers–Ulam stability and Hyers–Ulam–Rassias stability are discussed. Finally, we provide an example to demonstrate our main results.


Sign in / Sign up

Export Citation Format

Share Document