scholarly journals Analysis of Rigid Body Dynamic Excavator Crane Arm for Safety use in Mining and Infrastructure Industries using Ansys 16.2

Author(s):  
Sumar Hadi Suryo
Author(s):  
Andi I. Mahyuddin ◽  
Ashok Midha

Abstract The camshaft of a cam-follower mechanism experiences a position-dependent moment due to the force exerted on the cam by the follower, causing the angular speed of the camshaft to fluctuate. In this work, a method to expediently predict the camshaft speed fluctuation is developed. The governing equation of motion is derived assuming that the cam-follower system is an ideal one wherein all members are treated as rigid. An existing closed-form numerical algorithm is used to obtain the steady-state rigid-body dynamic response of a machine system. The solution considers a velocity-dependent moment; specifically, a resisting moment is modeled as a velocity-squared damping. The effects of flywheel size and resisting moment on camshaft speed fluctuation are studied. The results compare favorably with those obtained from transient response using a direct integration scheme. The analytical result also shows excellent agreement with the camshaft speed variation of an experimental cam-follower mechanism. The steady-state rigid-body dynamic response obtained herein also serves as a first approximation to the input camshaft speed variation in the dynamic analysis of flexible cam-follower mechanisms in a subsequent research.


Author(s):  
Yue-Qing Yu ◽  
Qian Li ◽  
Qi-Ping Xu

An intensive study on the dynamic modeling and analysis of compliant mechanisms is presented in this paper based on the pseudo-rigid-body model. The pseudo-rigid-body dynamic model with single degree-of-freedom is proposed at first and the dynamic equation of the 1R pseudo-rigid-body dynamic model for a flexural beam is presented briefly. The pseudo-rigid-body dynamic models with multi-degrees-of-freedom are then derived in detail. The dynamic equations of the 2R pseudo-rigid-body dynamic model and 3R pseudo-rigid-body dynamic model for the flexural beams are obtained using Lagrange equation. Numerical investigations on the natural frequencies and dynamic responses of the three pseudo-rigid-body dynamic models are made. The effectiveness and superiority of the pseudo-rigid-body dynamic model has been shown by comparing with the finite element analysis method. An example of a compliant parallel-guiding mechanism is presented to investigate the dynamic behavior of the mechanism using the 2R pseudo-rigid-body dynamic model.


2015 ◽  
Vol 75 (2) ◽  
Author(s):  
Norhaida Mohd Suaib ◽  
Abdullah Bade ◽  
Dzulkifli Mohamad

This paper discusses on sphere encapsulated oriented-discrete orientation polytopes (therefore will be referred to as S-Dop) collision culling for multiple rigid body simulation. In order to improve performance of the whole simulation system, there are available options in sacrificing the accuracy over speed by using certain approximation techniques. The aim of this research is to achieve excellent performance through implementation of suitable culling technique, without jeopardizing the resulting behavior so that the simulation will still be physically plausible. The basic idea is to identify the highly probable pairs to collide and test the pair with a more accurate collision test in broad-phase collision detection, before the pair is passed to a more costly stage. Results from the experiments showed that there are a number of ways to implement the sphere encapsulated or-Dops (S-Dop) collision culling on a multiple rigid body simulation depending on the level of performance needed.  


Author(s):  
Kurt S. Anderson

Abstract This paper presents an algorithm for the efficient numerical analysis and simulation of modest to heavily constrained multi-rigid-body dynamic systems. The algorithm can accommodate the spatial motion of general multi-rigid-body systems containing arbitrarily many closed loops in O(n + m) operations overall for systems containing n generalized coordinates, and m independent algebraic constraints. The presented approach does not suffer from the performance (speed) penalty encountered by most other of the so-called “O(n)” state-space formulations, when dealing with constraints which tend to actually show O(n + m + nm + nm2 + m3) performance. Additionally, these latter formulations may require additional constraint violation stablization procedures (e.g. Baumgarte’s method, coordinate partitioning, etc.) which can contribute significant additional computation. The presented method suffers less from this difficulty because the loop closure constraints at both the velocity and acceleration level are directly embedded within the formulation. Due to these characteristics, the presented algorithm should offer superior computing performance relative to other methods in situations involving both large n and m.


Sign in / Sign up

Export Citation Format

Share Document