scholarly journals Fuzzy Inference System Using Tsukamoto Method For Making Decision of Production (Case Study: PT Waru Kaltim Plantation)

METIK JURNAL ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 76-82
Author(s):  
Dominggus Norvindes Dellas ◽  
Ika Purnamasari ◽  
Nanda Arista Rizki

The decision-making process using a fuzzy inference system (FIS) logic can use one of the methods called the Tsukamoto method. The process carried out in this method is the same as the fuzzy method in general, namely the formation of fuzzy sets, the fuzzification process, defuzzification, and measuring the accuracy of the result. The purpose of this study was to apply the Tsukamoto method to predict the yield of oil palm production at PT. Waru Kaltim Plantation. Based on the analysis using the Tsukamoto method, 36 fuzzy rules were obtained for each data from February 2013 to December 2015. The prediction results of palm oil production in 2013 did not change, except for May and August. In February, March, June, and August 2014 the level of production is constant, and almost throughout 2015, there was constant. The predicted MAPE for oil palm production was 31,522%, or in the fairly good category.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jose M. Gonzalez-Cava ◽  
José Antonio Reboso ◽  
José Luis Casteleiro-Roca ◽  
José Luis Calvo-Rolle ◽  
Juan Albino Méndez Pérez

One of the main challenges in medicine is to guarantee an appropriate drug supply according to the real needs of patients. Closed-loop strategies have been widely used to develop automatic solutions based on feedback variables. However, when the variable of interest cannot be directly measured or there is a lack of knowledge behind the process, it turns into a difficult issue to solve. In this research, a novel algorithm to approach this problem is presented. The main objective of this study is to provide a new general algorithm capable of determining the influence of a certain clinical variable in the decision making process for drug supply and then defining an automatic system able to guide the process considering this information. Thus, this new technique will provide a way to validate a given physiological signal as a feedback variable for drug titration. In addition, the result of the algorithm in terms of fuzzy rules and membership functions will define a fuzzy-based decision system for the drug delivery process. The method proposed is based on a Fuzzy Inference System whose structure is obtained through a decision tree algorithm. A four-step methodology is then developed: data collection, preprocessing, Fuzzy Inference System generation, and the validation of results. To test this methodology, the analgesia control scenario was analysed. Specifically, the viability of the Analgesia Nociception Index (ANI) as a guiding variable for the analgesic process during surgical interventions was studied. Real data was obtained from fifteen patients undergoing cholecystectomy surgery.


2015 ◽  
Vol 25 (3) ◽  
pp. 377-396
Author(s):  
N. Sozhamadevi ◽  
S. Sathiyamoorthy

Abstract A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.


2014 ◽  
Vol 984-985 ◽  
pp. 425-430 ◽  
Author(s):  
Thangavel Ramya ◽  
A.C. Kannan ◽  
R.S. Balasenthil ◽  
B. Anusuya Bagirathi

— This paper demonstrates to build a Fuzzy Inference System (FIS) for any model utilizing the Fuzzy Logic Toolbox graphical user interface (GUI) tools. A different conception for decision making process, based on the fuzzy approach, is propounded by authors of the paper.The paper is worked out in two sections. Description about the Fuzzy Logic Tool box is done in the first section.Illustration with an introductory example concludes the second section. Based on various assumptions the authors construct the rule statements which are then converted into fuzzy rules and the GUI tools of the Fuzzy Logic Toolbox built using MATLAB numeric computing environment is used to construct a fuzzy inference system for this process.The output membership functions are expected to be fuzzy sets in Mamdani-type inference.Defuzzification of fuzzy set for each output variable generated after the aggregation process has to be carried out. Application of information technology for Decisions in today's environment which is highly competitive are undeniable principles of organizations and helps managers in making useful decisions meaningfully.


2013 ◽  
Vol 30 (02) ◽  
pp. 1250053 ◽  
Author(s):  
DRAGAN PAMUČAR ◽  
VESKO LUKOVAC ◽  
SNEŽANA PEJČIĆ-TARLE

The possibility for more confidential predictions, leaning on scientific methods and accomplishments of information technology leaves more time for the realization of logistic needs. Longstanding ambitions to acquire desired levels of efficiency within the system with minimal costs of resources, materials, energy and money are the features of executive structures of logistic systems. A successful logistic process is based on validation of technological development, indicating the need for a faster and more confidential integration of logistic systems and "instilling confidence" with military units that provide critical support (supply, transport and maintenance) will be reliably realized according to relevance and priority. Conclusions like these impose the necessity that the decision-making process of logistic organs is accessed carefully and systematically, since any wrong decision leads to a reduced state of readiness for military units. To facilitate the day-to-day operation of the Army of Serbia and the completion of both scheduled and unscheduled tasks it is necessary to satisfy the wide range of transport requirements. In this paper, the Adaptive Neuro Fuzzy Inference System (ANFIS) is described, thus making possible a strategy of coordination of transport assets to formulate an automatic control strategy. This model successfully imitates the decision-making process of the chiefs of logistic support. As a result of the research, it is shown that the suggested ANFIS, which has the ability to learn, has a possibility to imitate the decision-making process of the transport support officers and show the level of competence that is comparable with the level of their competence.


Author(s):  
Nor Najwa Irina Mohd Azlan ◽  
Marlinda Abdul Malek ◽  
Maslina Zolkepli ◽  
Jamilah Mohd Salim ◽  
Ali Najah Ahmed

Author(s):  
Robert Czabanski ◽  
Michal Jezewski ◽  
Janusz Jezewski ◽  
Janusz Wrobel ◽  
Krzysztof Horoba

CAUCHY ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 10 ◽  
Author(s):  
Venny Riana Riana Agustin ◽  
Wahyu Henky Irawan

Tsukamoto method is one method of fuzzy inference system on fuzzy logic for decision making. Steps of the decision making in this method, namely fuzzyfication (process changing the input into kabur), the establishment of fuzzy rules, fuzzy logic analysis, defuzzyfication (affirmation), as well as the conclusion and interpretation of the results. The results from this research are steps of the decision making in Tsukamoto method, namely fuzzyfication (process changing the input into kabur), the establishment of fuzzy rules by the general form IF a is A THEN B is B, fuzzy logic analysis to get alpha in every rule, defuzzyfication (affirmation) by weighted average method, as well as the conclusion and interpretation of the results. On customers at the case, in value of 16 the quality of services, the value of 17 the quality of goods, and value of 16 a price, a value of the results is 45,29063 and the level is low satisfaction


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 707 ◽  
Author(s):  
Tran Manh Tuan ◽  
Luong Thi Hong Lan ◽  
Shuo-Yan Chou ◽  
Tran Thi Ngan ◽  
Le Hoang Son ◽  
...  

Complex fuzzy theory has strong practical background in many important applications, especially in decision-making support systems. Recently, the Mamdani Complex Fuzzy Inference System (M-CFIS) has been introduced as an effective tool for handling events that are not restricted to only values of a given time point but also include all values within certain time intervals (i.e., the phase term). In such decision-making problems, the complex fuzzy theory allows us to observe both the amplitude and phase values of an event, thus resulting in better performance. However, one of the limitations of the existing M-CFIS is the rule base that may be redundant to a specific dataset. In order to handle the problem, we propose a new Mamdani Complex Fuzzy Inference System with Rule Reduction Using Complex Fuzzy Measures in Granular Computing called M-CFIS-R. Several fuzzy similarity measures such as Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex Fuzzy Dice Similarity Measure (CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM) together with their weighted versions are proposed. Those measures are integrated into the M-CFIS-R system by the idea of granular computing such that only important and dominant rules are being kept in the system. The difference and advantage of M-CFIS-R against M-CFIS is the usage of the training process in which the rule base is repeatedly changed toward the original base set until the performance is better. By doing so, the new rule base in M-CFIS-R would improve the performance of the whole system. Experiments on various decision-making datasets demonstrate that the proposed M-CFIS-R performs better than M-CFIS.


Sign in / Sign up

Export Citation Format

Share Document