Fuzzy Logic Modeling for Decision Making Processes Using MATLAB

2014 ◽  
Vol 984-985 ◽  
pp. 425-430 ◽  
Author(s):  
Thangavel Ramya ◽  
A.C. Kannan ◽  
R.S. Balasenthil ◽  
B. Anusuya Bagirathi

— This paper demonstrates to build a Fuzzy Inference System (FIS) for any model utilizing the Fuzzy Logic Toolbox graphical user interface (GUI) tools. A different conception for decision making process, based on the fuzzy approach, is propounded by authors of the paper.The paper is worked out in two sections. Description about the Fuzzy Logic Tool box is done in the first section.Illustration with an introductory example concludes the second section. Based on various assumptions the authors construct the rule statements which are then converted into fuzzy rules and the GUI tools of the Fuzzy Logic Toolbox built using MATLAB numeric computing environment is used to construct a fuzzy inference system for this process.The output membership functions are expected to be fuzzy sets in Mamdani-type inference.Defuzzification of fuzzy set for each output variable generated after the aggregation process has to be carried out. Application of information technology for Decisions in today's environment which is highly competitive are undeniable principles of organizations and helps managers in making useful decisions meaningfully.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jose M. Gonzalez-Cava ◽  
José Antonio Reboso ◽  
José Luis Casteleiro-Roca ◽  
José Luis Calvo-Rolle ◽  
Juan Albino Méndez Pérez

One of the main challenges in medicine is to guarantee an appropriate drug supply according to the real needs of patients. Closed-loop strategies have been widely used to develop automatic solutions based on feedback variables. However, when the variable of interest cannot be directly measured or there is a lack of knowledge behind the process, it turns into a difficult issue to solve. In this research, a novel algorithm to approach this problem is presented. The main objective of this study is to provide a new general algorithm capable of determining the influence of a certain clinical variable in the decision making process for drug supply and then defining an automatic system able to guide the process considering this information. Thus, this new technique will provide a way to validate a given physiological signal as a feedback variable for drug titration. In addition, the result of the algorithm in terms of fuzzy rules and membership functions will define a fuzzy-based decision system for the drug delivery process. The method proposed is based on a Fuzzy Inference System whose structure is obtained through a decision tree algorithm. A four-step methodology is then developed: data collection, preprocessing, Fuzzy Inference System generation, and the validation of results. To test this methodology, the analgesia control scenario was analysed. Specifically, the viability of the Analgesia Nociception Index (ANI) as a guiding variable for the analgesic process during surgical interventions was studied. Real data was obtained from fifteen patients undergoing cholecystectomy surgery.


METIK JURNAL ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 76-82
Author(s):  
Dominggus Norvindes Dellas ◽  
Ika Purnamasari ◽  
Nanda Arista Rizki

The decision-making process using a fuzzy inference system (FIS) logic can use one of the methods called the Tsukamoto method. The process carried out in this method is the same as the fuzzy method in general, namely the formation of fuzzy sets, the fuzzification process, defuzzification, and measuring the accuracy of the result. The purpose of this study was to apply the Tsukamoto method to predict the yield of oil palm production at PT. Waru Kaltim Plantation. Based on the analysis using the Tsukamoto method, 36 fuzzy rules were obtained for each data from February 2013 to December 2015. The prediction results of palm oil production in 2013 did not change, except for May and August. In February, March, June, and August 2014 the level of production is constant, and almost throughout 2015, there was constant. The predicted MAPE for oil palm production was 31,522%, or in the fairly good category.


CAUCHY ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 48
Author(s):  
Wildan Hakim ◽  
Turmudi Turmudi

Sugeno method is one method of fuzzy inference system on fuzzy logic for decision making. In-Zero Order Sugeno method in fuzzy logic consists of four stages: 1. fuzzification. 2. The application functionality implications, the implication function used is function MIN (minimum). 3. The composition rule using the function MAX (maximum). 4. Defuzzification weight average. Based on case 1, each student with non-formal education and informal education by 12 by 19 has a value of 20.7 and a variable linguistic personality is MEDIUM. Suggestions for further research can use other parameters in determining the level of personality of students with fuzzy logic


2013 ◽  
Vol 30 (02) ◽  
pp. 1250053 ◽  
Author(s):  
DRAGAN PAMUČAR ◽  
VESKO LUKOVAC ◽  
SNEŽANA PEJČIĆ-TARLE

The possibility for more confidential predictions, leaning on scientific methods and accomplishments of information technology leaves more time for the realization of logistic needs. Longstanding ambitions to acquire desired levels of efficiency within the system with minimal costs of resources, materials, energy and money are the features of executive structures of logistic systems. A successful logistic process is based on validation of technological development, indicating the need for a faster and more confidential integration of logistic systems and "instilling confidence" with military units that provide critical support (supply, transport and maintenance) will be reliably realized according to relevance and priority. Conclusions like these impose the necessity that the decision-making process of logistic organs is accessed carefully and systematically, since any wrong decision leads to a reduced state of readiness for military units. To facilitate the day-to-day operation of the Army of Serbia and the completion of both scheduled and unscheduled tasks it is necessary to satisfy the wide range of transport requirements. In this paper, the Adaptive Neuro Fuzzy Inference System (ANFIS) is described, thus making possible a strategy of coordination of transport assets to formulate an automatic control strategy. This model successfully imitates the decision-making process of the chiefs of logistic support. As a result of the research, it is shown that the suggested ANFIS, which has the ability to learn, has a possibility to imitate the decision-making process of the transport support officers and show the level of competence that is comparable with the level of their competence.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Arati M. Dixit ◽  
Harpreet Singh

The real-time nondestructive testing (NDT) for crack detection and impact source identification (CDISI) has attracted the researchers from diverse areas. This is apparent from the current work in the literature. CDISI has usually been performed by visual assessment of waveforms generated by a standard data acquisition system. In this paper we suggest an automation of CDISI for metal armor plates using a soft computing approach by developing a fuzzy inference system to effectively deal with this problem. It is also advantageous to develop a chip that can contribute towards real time CDISI. The objective of this paper is to report on efforts to develop an automated CDISI procedure and to formulate a technique such that the proposed method can be easily implemented on a chip. The CDISI fuzzy inference system is developed using MATLAB’s fuzzy logic toolbox. A VLSI circuit for CDISI is developed on basis of fuzzy logic model using Verilog, a hardware description language (HDL). The Xilinx ISE WebPACK9.1i is used for design, synthesis, implementation, and verification. The CDISI field-programmable gate array (FPGA) implementation is done using Xilinx’s Spartan 3 FPGA. SynaptiCAD’s Verilog Simulators—VeriLogger PRO and ModelSim—are used as the software simulation and debug environment.


CAUCHY ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 10 ◽  
Author(s):  
Venny Riana Riana Agustin ◽  
Wahyu Henky Irawan

Tsukamoto method is one method of fuzzy inference system on fuzzy logic for decision making. Steps of the decision making in this method, namely fuzzyfication (process changing the input into kabur), the establishment of fuzzy rules, fuzzy logic analysis, defuzzyfication (affirmation), as well as the conclusion and interpretation of the results. The results from this research are steps of the decision making in Tsukamoto method, namely fuzzyfication (process changing the input into kabur), the establishment of fuzzy rules by the general form IF a is A THEN B is B, fuzzy logic analysis to get alpha in every rule, defuzzyfication (affirmation) by weighted average method, as well as the conclusion and interpretation of the results. On customers at the case, in value of 16 the quality of services, the value of 17 the quality of goods, and value of 16 a price, a value of the results is 45,29063 and the level is low satisfaction


2019 ◽  
Vol 8 (4) ◽  
pp. 8961-8964

Software is a basic system that acts as a major key part in general functioning system like securing the need of performance and scope of the system. Here the security is given to unauthorized user as unauthorized client that casually gets the change or modification within the system by effecting the efficiency and functionality of the system. So in order to overcome this issue new improved software is taken that improves the system performance and security. the paper represents a new fuzzy logic based system for handling secured attribute and assessment in software. Based on this reason we propose PC1 and bugs dataset for fuzzy inference system can be used. This secured system model helps software engineers to select secured and safety software for the performance and ambiguity.


2021 ◽  
Vol 26 (2) ◽  
pp. 163-175
Author(s):  
Asyaroh Ramadona Nilawati ◽  
Taufik Hidayat

Ekstraksi pola pembuluh darah retina dapat dimanfaatkan dalam sistem biometrik sebagai otentikasi keamanan. Citra hasil ekstraksi pola pembuluh darah retina dapat dimasukkan ke dalam fitur untuk identifikasi sistem biometrik. Salah satu metode yang dapat dilakukan untuk melakukan segmentasi pembuluh darah retina adalah metode fuzzy logic. Pada penelitian ini, dilakukan ekstraksi pembuluh darah citra fundus retina menggunakan implementasi fuzzy logic. Peneliti menggunakan sejumlah 20 citra fundus yang diperoleh dari dataset DRIVE berformat .tif. Proses segmentasi dimulai dengan tahap preprocessing yang berisikan konversi citra menjadi grayscale, median filtering, perataan histogram CLAHE, dan eliminasi optic disc, kemudian dilanjutkan dengan pembuatan fuzzy inference system. Tahapan preprocessing yang digunakan merupakan hasil dari rangkaian uji coba peneliti dengan melihat hasil dari setiap uji coba yang dilakukan, sehingga mendapatkan citra yang menonjolkan fitur pembuluh darah dan menghilangkan noise atau fitur retina yang tidak diperlukan seperti optic disc. Uji coba segmentasi dilakukan pada Polyspace R2020a sebagai media untuk menjalankan program mulai dari preprocessing hingga segmentasi menggunakan fuzzy logic. Keluaran dari segmentasi ini berupa citra segmentasi hasil dari metode fuzzy logic dan crisp value. Metode fuzzy logic berhasil diterapkan untuk melakukan ekstraksi pembuluh darah retina dan menghasilkan crisp value. Hasil penelitian ini diharapkan dapat digunakan sebagai salah satu fitur sistem identifikasi biometrik retina.


Sign in / Sign up

Export Citation Format

Share Document