scholarly journals Boundary Condition Effect on Two-Phase Fluid Flow ‎and Heat Transfer inside 3-D Microchannels

2021 ◽  
Vol 14 (6) ◽  
2004 ◽  
Author(s):  
Lieke Wang ◽  
Bengt Sunde´n

Numerical simulations of two-phase fluid flow and heat transfer with or without phase change have been carried out. The Volume-of-Fluid (VOF) model was used in the simulations, and a procedure for considering the phase change process was developed. The Piecewise Linear Interface Calculation (PLIC) method is employed for the interface reconstruction, to keep the sharp interface. The coupling between pressure and velocity is treated by the SIMPLEC algorithm. The surface tension is modeled by the Continuum Surface Force (CSF) model. An in-house code has been developed, and two examples are presented in this paper, i.e., dam-break case and a falling water droplet in a steam bath. The calculation results are compared with corresponding experimental data, and good agreement is obtained.


2011 ◽  
Vol 250-253 ◽  
pp. 3913-3918 ◽  
Author(s):  
Shun Yu Su ◽  
Tian Tian ◽  
Jian Chen

The mechanism of fluid flow and heat transfer in the heat exchangers was investigated in this paper. Using R22 as the working fluid, the steady distributed parameter models of condenser and evaporator in a residential split air-conditioner were established based on thermophysical laws such as mass, momentum and energy conservation equations. The regions of two-phase fluid and superheated gas in evaporator and the regions of superheated gas, two-phase fluid and subcooled liquid in condenser were respectively simulated under designed conditions of air-conditioning system. Based on the calculated results, the flow and heat transfer performances of heat exchangers were analyzed. The results show that the two-phase fluid regions in both evaporator and condenser have great influence on the fluid flow and heat transfer performances in it.


Sign in / Sign up

Export Citation Format

Share Document