scholarly journals Effect of Fluid-Structure Interaction on Noise Generation in MAV with Fixed and Flapping Membrane Wing

2021 ◽  
Vol 14 (06) ◽  
Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract Unmanned aerial vehicles are applicable in a lot of areas including weather condition monitoring, surveillance, and reconnaissance. They need further development in design, especially, for the turbulent atmospheric conditions. Smart materials are considered for wing manufacturing for gust alleviation whereas membranes are found suitable for such applications, and therefore, analyzing aerodynamic properties of the membrane is important. Wind gusts create an abrupt atmospheric situation for unmanned aerial vehicles during the flight. In this study, a continuous gust profile and two types of stochastic gust models, i.e., Dryden gust model and von Karman gust model are developed to study the effects of gust load on a flexible membrane wing. One of the promising ways to reduce the effects of the gust is by using an electroactive membrane wing. A fluid-structure-interaction model by coupling the finite element model of the membrane and computational fluid dynamics model of the surrounding airflow is generated. Aerodynamic coefficients are calculated from the forces found from the numerical results for different gust velocities. A wind-tunnel experimental setup is used to investigate the aerodynamic responses of the membrane wing. Dryden gust model and von Karman gust model are found comparable with a minimum variation of magnitude in the gust velocity profile. The coefficients of lift and drag fluctuate significantly with the change in velocity due to wind gust. A validation of the fluid-structure-interaction model is performed by comparing the numerical results for the lift and drag coefficients with the experimental results. The outcome of this study contributes to better understand the aerodynamics and maneuverability of unmanned aerial vehicles in the gust environment.


Author(s):  
R. C. K. Leung ◽  
Y. L. Lau ◽  
R. M. C. Si

A time-marching numerical model for the analysis of fluid-structure interaction caused by oncoming alternating vortices has been developed by Jadic et al. (1998). Its applicability to analyzing realistic fluid–structure interaction problems has successfully been established in a recent experimental work of a flat plate in a circular cylinder wake (Lau et al. 2002). Using the model, So et al. (1999) have predicted that, under the excitation of oncoming Karman vortex street (KVS) vortices, an elastic airfoil/blade in inviscid uniform flow exhibits two types of fluid–structure resonance, namely aerodynamic and structural resonance. Aerodynamic resonance is of pure aerodynamic origin and occurs with rigid airfoil/blade excited at normalized frequency parameter c/d = 0.5, 1.5, 2.5 etc., where c is the blade chord and d is the streamwise separation between two neighboring vortices. For an elastic airfoil/blade, as a result of coupled fluid–structure interaction, structural resonance occurs at a normalized frequency close to the natural frequency in vacuo of the airfoil/blade. The occurrence of fluid-structure resonance has also been shown critical in noise generation process (Leung & So 2001). The present study extends the scope of the analysis to fluid–structure interactions occurring in axial–flow turbomachine cascade. When the flow is passing through the rotor, it generates wakes containing KVS vortices behind the rotor blades. The convecting wake will induce perturbations on the downstream stator blades at a wake passing frequency (Rao 1991). Such wake–blade interaction is important in determining the fatigue life of the blades and noise generation of the cascade. The cascade analysis starts with modeling the two-dimensional turbine stator by five high–loading blades evenly separated by s in inviscid uniform flow. Oncoming KVS vortices are released upstream to represent the passing wake originating from the rotor, and are allowed to pass through the stator blades. The blade pitch to blade chord ratio s/c and normalized frequency parameter c/d are important parameters of the problems. Fluid–structure interactions are fully resolved by the same numerical technique (Jadic et al. 1998, So et al. 1999). The combined effects of s/c and c/d on the aerodynamic and structural responses of the central blade are studied and discussed.


2021 ◽  
Vol 33 (6) ◽  
pp. 063610
Author(s):  
Guangjing Huang ◽  
Yingjie Xia ◽  
Yuting Dai ◽  
Chao Yang ◽  
You Wu

Sign in / Sign up

Export Citation Format

Share Document