scholarly journals On the Vertex-Degree Based Invariants of Digraphs

2021 ◽  
Vol 9 ◽  
pp. 2-9
Keyword(s):  
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 359
Author(s):  
Hassan Ibrahim ◽  
Reza Sharafdini ◽  
Tamás Réti ◽  
Abolape Akwu

Let G be a connected (molecular) graph with the vertex set V(G)={v1,⋯,vn}, and let di and σi denote, respectively, the vertex degree and the transmission of vi, for 1≤i≤n. In this paper, we aim to provide a new matrix description of the celebrated Wiener index. In fact, we introduce the Wiener–Hosoya matrix of G, which is defined as the n×n matrix whose (i,j)-entry is equal to σi2di+σj2dj if vi and vj are adjacent and 0 otherwise. Some properties, including upper and lower bounds for the eigenvalues of the Wiener–Hosoya matrix are obtained and the extremal cases are described. Further, we introduce the energy of this matrix.


2020 ◽  
pp. 199-206
Author(s):  
Louis V. Quintas ◽  
Edgar G. DuCasse
Keyword(s):  

Author(s):  
Saieed Akbari ◽  
Abdullah Alazemi ◽  
Milica Andjelic

The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.


10.37236/935 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael Behrisch

We study the evolution of the order of the largest component in the random intersection graph model which reflects some clustering properties of real–world networks. We show that for appropriate choice of the parameters random intersection graphs differ from $G_{n,p}$ in that neither the so-called giant component, appearing when the expected vertex degree gets larger than one, has linear order nor is the second largest of logarithmic order. We also describe a test of our result on a protein similarity network.


Filomat ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 1025-1033
Author(s):  
Predrag Milosevic ◽  
Emina Milovanovic ◽  
Marjan Matejic ◽  
Igor Milovanovic

Let G be a simple connected graph of order n and size m, vertex degree sequence d1 ? d2 ?...? dn > 0, and let ?1 ? ? 2 ? ... ? ?n-1 > ?n = 0 be the eigenvalues of its Laplacian matrix. Laplacian energy LE, Laplacian-energy-like invariant LEL and Kirchhoff index Kf, are graph invariants defined in terms of Laplacian eigenvalues. These are, respectively, defined as LE(G) = ?n,i=1 |?i-2m/n|, LEL(G) = ?n-1 i=1 ??i and Kf (G) = n ?n-1,i=1 1/?i. A vertex-degree-based topological index referred to as degree deviation is defined as S(G) = ?n,i=1 |di- 2m/n|. Relations between Kf and LE, Kf and LEL, as well as Kf and S are obtained.


Author(s):  
V. S. Guba

By the density of a finite graph we mean its average vertex degree. For an [Formula: see text]-generated group, the density of its Cayley graph in a given set of generators, is the supremum of densities taken over all its finite subgraphs. It is known that a group with [Formula: see text] generators is amenable if and only if the density of the corresponding Cayley graph equals [Formula: see text]. A famous problem on the amenability of R. Thompson’s group [Formula: see text] is still open. Due to the result of Belk and Brown, it is known that the density of its Cayley graph in the standard set of group generators [Formula: see text], is at least [Formula: see text]. This estimate has not been exceeded so far. For the set of symmetric generators [Formula: see text], where [Formula: see text], the same example only gave an estimate of [Formula: see text]. There was a conjecture that for this generating set equality holds. If so, [Formula: see text] would be non-amenable, and the symmetric generating set would have the doubling property. This would mean that for any finite set [Formula: see text], the inequality [Formula: see text] holds. In this paper, we disprove this conjecture showing that the density of the Cayley graph of [Formula: see text] in symmetric generators [Formula: see text] strictly exceeds [Formula: see text]. Moreover, we show that even larger generating set [Formula: see text] does not have doubling property.


2000 ◽  
Vol 212 (1-2) ◽  
pp. 61-73 ◽  
Author(s):  
Igor Fabrici ◽  
Erhard Hexel ◽  
Stanislav Jendrol’ ◽  
Hansjoachim Walther
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document