scholarly journals Wiener–Hosoya Matrix of Connected Graphs

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 359
Author(s):  
Hassan Ibrahim ◽  
Reza Sharafdini ◽  
Tamás Réti ◽  
Abolape Akwu

Let G be a connected (molecular) graph with the vertex set V(G)={v1,⋯,vn}, and let di and σi denote, respectively, the vertex degree and the transmission of vi, for 1≤i≤n. In this paper, we aim to provide a new matrix description of the celebrated Wiener index. In fact, we introduce the Wiener–Hosoya matrix of G, which is defined as the n×n matrix whose (i,j)-entry is equal to σi2di+σj2dj if vi and vj are adjacent and 0 otherwise. Some properties, including upper and lower bounds for the eigenvalues of the Wiener–Hosoya matrix are obtained and the extremal cases are described. Further, we introduce the energy of this matrix.

Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750057
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Sadegh Rahimi

The Wiener number [Formula: see text] of a graph [Formula: see text] was introduced by Harold Wiener in connection with the modeling of various physic-chemical, biological and pharmacological properties of organic molecules in chemistry. Milan Randić introduced a modification of the Wiener index for trees (acyclic graphs), and it is known as the hyper-Wiener index. Then Klein et al. generalized Randić’s definition for all connected (cyclic) graphs, as a generalization of the Wiener index, denoted by [Formula: see text] and defined as [Formula: see text]. In this paper, we establish some upper and lower bounds for [Formula: see text], in terms of other graph-theoretic parameters. Moreover, we compute hyper-Wiener number of some classes of graphs.


2019 ◽  
Vol 17 (1) ◽  
pp. 668-676
Author(s):  
Tingzeng Wu ◽  
Huazhong Lü

Abstract Let G be a connected graph and u and v two vertices of G. The hyper-Wiener index of graph G is $\begin{array}{} WW(G)=\frac{1}{2}\sum\limits_{u,v\in V(G)}(d_{G}(u,v)+d^{2}_{G}(u,v)) \end{array}$, where dG(u, v) is the distance between u and v. In this paper, we first give the recurrence formulae for computing the hyper-Wiener indices of polyphenyl chains and polyphenyl spiders. We then obtain the sharp upper and lower bounds for the hyper-Wiener index among polyphenyl chains and polyphenyl spiders, respectively. Moreover, the corresponding extremal graphs are determined.


Filomat ◽  
2009 ◽  
Vol 23 (3) ◽  
pp. 103-113 ◽  
Author(s):  
S. Hossein-Zadeh ◽  
A. Hamzeh ◽  
A.R. Ashrafi

Let d(G, k) be the number of pairs of vertices of a graph G that are at distance k, ? a real number, and W?(G) =?k?1 d(G, k)k?. W?(G) is called the Wiener-type invariant of G associated to real number ?. In this paper, the Wiener-type invariants of some graph operations are computed. As immediate consequences, the formulae for reciprocal Wiener index, Harary index, hyper- Wiener index and Tratch-Stankevich-Zefirov index are calculated. Some upper and lower bounds are also presented.


Author(s):  
Ortrud R. Oellermann

AbstractAn induced subgraph H of connectivity (edge-connectivity) n in a graph G is a major n-connected (major n-edge-connected) subgraph of G if H contains no subgraph with connectivity (edge- connectivity) exceeding n and H has maximum order with respect to this property. An induced subgraph is a major (major edge-) subgraph if it is a major n-connected (major n-edge-connected) subgraph for some n. Let m be the maximum order among all major subgraphs of C. Then the major connectivity set K(G) of G is defined as the set of all n for which there exists a major n-connected subgraph of G having order m. The major edge-connectivity set is defined analogously. The connectivity and the elements of the major connectivity set of a graph are compared, as are the elements of the major connectivity set and the major edge-connectivity set of a graph. It is shown that every set S of nonnegative integers is the major connectivity set of some graph G. Further, it is shown that for each positive integer m exceeding every element of S, there exists a graph G such that every major k-connected subgraph of G, where k ∈ K(G), has order m. Moreover, upper and lower bounds on the order of such graphs G are established.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1097 ◽  
Author(s):  
Álvaro Martínez-Pérez ◽  
José M. Rodríguez

Topological indices are useful for predicting the physicochemical behavior of chemical compounds. A main problem in this topic is finding good bounds for the indices, usually when some parameters of the graph are known. The aim of this paper is to use a unified approach in order to obtain several new inequalities for a wide family of topological indices restricted to trees and to characterize the corresponding extremal trees. The main results give upper and lower bounds for a large class of topological indices on trees, fixing or not the maximum degree. This class includes the first variable Zagreb, the Narumi–Katayama, the modified Narumi–Katayama and the Wiener index.


1993 ◽  
Vol 16 (3) ◽  
pp. 579-586 ◽  
Author(s):  
Garry Johns ◽  
Karen Sleno

The antipodal graph of a graphG, denoted byA(G), has the same vertex set asGwith an edge joining verticesuandvifd(u,v)is equal to the diameter ofG. (IfGis disconnected, thendiam G=∞.) This definition is extended to a digraphDwhere the arc(u,v)is included inA(D)ifd(u,v)is the diameter ofD. It is shown that a digraphDis an antipodal digraph if and only ifDis the antipodal digraph of its complement. This generalizes a known characterization for antipodal graphs and provides an improved proof. Examples and properties of antipodal digraphs are given. A digraphDis self-antipodal ifA(D)is isomorphic toD. Several characteristics of a self-antipodal digraphDare given including sharp upper and lower bounds on the size ofD. Similar results are given for self-antipodal graphs.


2009 ◽  
Vol 19 (06) ◽  
pp. 595-615 ◽  
Author(s):  
MANUEL ABELLANAS ◽  
PROSENJIT BOSE ◽  
JESÚS GARCÍA ◽  
FERRAN HURTADO ◽  
CARLOS M. NICOLÁS ◽  
...  

Given a set P of n points in the plane, the order-k Delaunay graph is a graph with vertex set P and an edge exists between two points p, q ∈ P when there is a circle through p and q with at most k other points of P in its interior. We provide upper and lower bounds on the number of edges in an order-k Delaunay graph. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph. Furthermore, we show that the order-k Delaunay graph is connected under the flip operation when k ≤ 1 but not necessarily connected for other values of k. If P is in convex position then the order-k Delaunay graph is connected for all k ≥ 0. We show that the order-k Gabriel graph, a subgraph of the order-k Delaunay graph, is Hamiltonian for k ≥ 15. Finally, the order-k Delaunay graph can be used to efficiently solve a coloring problem with applications to frequency assignments in cellular networks.


2020 ◽  
pp. 1-5
Author(s):  
Nur Idayu Alimon ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Topological indices are the numerical values that can be calculated from a graph and it is calculated based on the molecular graph of a chemical compound. It is often used in chemistry to analyse the physical properties of the molecule which can be represented as a graph with a set of vertices and edges. Meanwhile, the non-commuting graph is the graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if they do not commute. The symmetric group, denoted as S_n, is a set of all permutation under composition. In this paper, two of the topological indices, namely the Wiener index and the Zagreb index of the non-commuting graph for symmetric groups of order 6 and 24 are determined. Keywords: Wiener index; Zagreb index; non-commuting graph; symmetric groups


2016 ◽  
Vol 27 (04) ◽  
pp. 501-509
Author(s):  
Zongtian Wei ◽  
Nannan Qi ◽  
Xiaokui Yue

Let G be a connected graph. A set of vertices [Formula: see text] is called subverted from G if each of the vertices in S and the neighbor of S in G are deleted from G. By G/S we denote the survival subgraph that remains after S is subverted from G. A vertex set S is called a cut-strategy of G if G/S is disconnected, a clique, or ø. The vertex-neighbor-scattering number of G is defined by [Formula: see text], where S is any cut-strategy of G, and ø(G/S) is the number of components of G/S. It is known that this parameter can be used to measure the vulnerability of spy networks and the computing problem of the parameter is NP-complete. In this paper, we discuss the vertex-neighbor-scattering number of bipartite graphs. The NP-completeness of the computing problem of this parameter is proven, and some upper and lower bounds of the parameter are also given.


Sign in / Sign up

Export Citation Format

Share Document