Métodos Monte Carlo Quântico e Outer Valence Green's function aplicados na obtenção de energias de ionização de sistemas atômicos e moleculares e na construção e interpretação de diagramas de correlação

Author(s):  
Leandro de Abreu
1992 ◽  
Vol 45 (1) ◽  
pp. 471-473
Author(s):  
X. Y. Zhang ◽  
R. L. Sugar ◽  
R. T. Scalettar

2007 ◽  
Vol 21 (23n24) ◽  
pp. 4219-4224 ◽  
Author(s):  
CHI-HANG LAM ◽  
M. T. LUNG

Arrays of nanosized three dimensional islands are known to self-assemble spontaneously on strained heteroepitaxial thin films. We simulate the dynamics using kinetic Monte Carlo method based on a ball and spring lattice model. Green's function and super-particle methods which greatly enhance the computational efficiency are explained.


1997 ◽  
Vol 52 (11) ◽  
pp. 793-802 ◽  
Author(s):  
C. Mecke ◽  
F. F. Seelig

Abstract Using an old formulation for correlation functions with correct cusp-behaviour, the Schrödinger equation transforms to a new differential equation which provides a very simple expression for the local electronic energy with limited range. This, together with the simplicity of the formulation promises a high performance in Green's function Monte Carlo (GFMC) simulations of small electronic systems. The behaviour of the local energy is studied on a few simple examples because the variance of this function determines the quality of the results in the GFMC methods. Calculations for one-and two-electron systems are presented and compared with results from well-known functions. The form of the function is then extended to systems with more than two electrons. Results for the Be atom are given and the extension to larger electronic systems is discussed.


Sign in / Sign up

Export Citation Format

Share Document