scholarly journals TIME ANALYSIS OF VIRTUAL SPECTRUM ANALYZER

2014 ◽  
pp. 31-38
Author(s):  
Wieslaw Winiecki ◽  
Piotr Bilski

The problem of the Real-Time virtual instrument is presented. The requirements for the Real-Time conditions are explained. The method of the instrument time analysis is proposed. The virtual spectrum analyser is examined in order to reveal properties of the software functions. The optimisation procedure is described and its results are presented. The conclusions for the future developers have been articulated.

Author(s):  
Ritesh Srivastava ◽  
M.P.S. Bhatia

Twitter behaves as a social sensor of the world. The tweets provided by the Twitter Firehose reveal the properties of big data (i.e. volume, variety, and velocity). With millions of users on Twitter, the Twitter's virtual communities are now replicating the real-world communities. Consequently, the discussions of real world events are also very often on Twitter. This work has performed the real-time analysis of the tweets related to a targeted event (e.g. election) to identify those potential sub-events that occurred in the real world, discussed over Twitter and cause the significant change in the aggregated sentiment score of the targeted event with time. Such type of analysis can enrich the real-time decision-making ability of the event bearer. The proposed approach utilizes a three-step process: (1) Real-time sentiment analysis of tweets (2) Application of Bayesian Change Points Detection to determine the sentiment change points (3) Major sub-events detection that have influenced the sentiment of targeted event. This work has experimented on Twitter data of Delhi Election 2015.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Andreas Thoma ◽  
Abhijith Moni ◽  
Sridhar Ravi

Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and deformations in a non-intrusive manner. By comparing two images, one from the undeformed reference states of the sample and the other from the deformed target state, the relative displacement between the two states is determined. DIC is well-known and often used for post-processing analysis of in-plane displacements and deformation of the specimen. Increasing the analysis speed to enable real-time DIC analysis will be beneficial and expand the scope of this method. Here we tested several combinations of the most common DIC methods in combination with different parallelization approaches in MATLAB and evaluated their performance to determine whether the real-time analysis is possible with these methods. The effects of computing with different hardware settings were also analyzed and discussed. We found that implementation problems can reduce the efficiency of a theoretically superior algorithm, such that it becomes practically slower than a sub-optimal algorithm. The Newton–Raphson algorithm in combination with a modified particle swarm algorithm in parallel image computation was found to be most effective. This is contrary to theory, suggesting that the inverse-compositional Gauss–Newton algorithm is superior. As expected, the brute force search algorithm is the least efficient method. We also found that the correct choice of parallelization tasks is critical in attaining improvements in computing speed. A poorly chosen parallelization approach with high parallel overhead leads to inferior performance. Finally, irrespective of the computing mode, the correct choice of combinations of integer-pixel and sub-pixel search algorithms is critical for efficient analysis. The real-time analysis using DIC will be difficult on computers with standard computing capabilities, even if parallelization is implemented, so the suggested solution would be to use graphics processing unit (GPU) acceleration.


2021 ◽  
Author(s):  
Wael Fares ◽  
Islam Moustafa ◽  
Ali Al Felasi ◽  
Hocine Khemissa ◽  
Omar Al Mutwali ◽  
...  

Abstract The high reservoir uncertainty, due to the lateral distribution of fluids, results in variable water saturation, which is very challenging in drilling horizontal wells. In order to reduce uncertainty, the plan was to drill a pilot hole to evaluate the target zones and plan horizontal sections based on the information gained. To investigate the possibility of avoiding pilot holes in the future, an advanced ultra-deep resistivity mapping sensor was deployed to map the mature reservoirs, to identify formation and fluid boundaries early before penetrating them, avoiding the need for pilot holes. Prewell inversion modeling was conducted to optimize the spacing and firing frequency selection and to facilitate an early real-time geostopping decision. The plan was to run the ultra-deep resistivity mapping sensor in conjunction with shallow propagation resistivity, density, and neutron porosity tools while drilling the 8 ½-in. landing section. The real-time ultra-deep resistivity mapping inversion was run using a depth of inversion up to 120 ft., to be able to detect the reservoir early and evaluate the predicted reservoir resistivity. This would allow optimization of any geostopping decision. The ultra-deep resistivity mapping sensor delivered accurate mapping of low resistivity zones up to 85 ft. TVD away from the wellbore in a challenging low resistivity environment. The real-time ultra-deep resistivity mapping inversion enabled the prediction of resistivity values in target zones prior to entering the reservoir; values which were later crosschecked against open-hole logs for validation. The results enabled identification of the optimal geostopping point in the 8 ½-in. section, enabling up to seven rig days to be saved in the future by eliminating a pilot hole. In addition this would eliminate the risk of setting a whipstock at high inclination with the subsequent impact on milling operations. In specific cases, this minimizes drilling risks in unknown/high reservoir pressure zones by improving early detection of formation tops. Plans were modified for a nearby future well and the pilot-hole phase was eliminated because of the confidence provided by these results. Deployment of the ultra-deep resistivity mapping sensor in these mature carbonate reservoirs may reduce the uncertainty associated with fluid migration. In addition, use of the tool can facilitate precise geosteering to maintain distance from fluid boundaries in thick reservoirs. Furthermore, due to the depths of investigation possible with these tools, it will help enable the mapping of nearby reservoirs for future development. Further multi-disciplinary studies remain desirable using existing standard log data to validate the effectiveness of this concept for different fields and reservoirs.


2019 ◽  
Vol 12 (2) ◽  
pp. 145-150
Author(s):  
Vasudevan Alasingachar

This article addresses two vectors of VUCA interwoven in the narratives, a summary of personal theories about VUCA. Such theories are anchored and arise from experiential learning in my practice as HR/L&D and OD consultants over the past four decades. The implication for HR and OD profession is to consider their relevance when organisations navigate VUCA. Next is the culling out of the specific learning about HR and OD interphases that has worked in my experience, supported by examples and metaphors. The premise I put forward as conclusion are: In order to be at the centre stage of partnering with business, HR and OD have to complement and innovate new-age VUCA strategies. VUCA competencies with appropriate metrics are in the formative stage. The competencies are emerging from the real-time stories of consultants, companies and academia (TATA 26/11 and DuPont safety mandate). Only when HR and OD integrate and work together can the future of leadership or start-up entrepreneurs learn from their insights to ‘thrive in VUCA’.


2020 ◽  
Vol 532 (1) ◽  
pp. 32-39
Author(s):  
Michielin F ◽  
Vetralla M ◽  
Bolego C ◽  
Gagliano O ◽  
Montagner M ◽  
...  

2013 ◽  
Vol 427-429 ◽  
pp. 983-986
Author(s):  
Yi Feng Cui ◽  
Su Goog Shon ◽  
Hee Jung Byun

The purpose of this paper is to show that a biped robot can walk by an imitation control. It proposes architecture and system for real-time imitation control of a biped robot. Using this method, the operator can interact with the robot to walk. The operator produces trajectory data necessary to start, stop, walk and redirect the robot. We have to send control commands or new angular position values for to the robot as fast as possible. To get intuition how fast the robot should be controlled, its falling time which as the primary time question is discussed. An inverted pendulum calculation example and the real robot fall down experiment were compared in this paper.


2019 ◽  
Vol 123 ◽  
pp. 185-194 ◽  
Author(s):  
Diana Seidel ◽  
Rebecca Rothe ◽  
Mandy Kirsten ◽  
Heinz-Georg Jahnke ◽  
Konstantin Dumann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document