Hudson River Fishes and their Environment

<em>Abstract.</em>—The Hudson River Estuary can be classified as a drowned river valley, partially mixed, tidally dominated estuary. Originally, it had a fjord-like morphology as a result of glacial scour which filled in over the past 3,000 years with river sediments. The hydrodynamics of the estuary are best described by the drivers of circulation, including the upstream river inflows, the oceanographic conditions at the downstream end, and meteorological conditions at the water surface and the response of the waters to these drivers in terms of tides and surges, currents, temperature, and salinity. Freshwater inflow is predominantly from the Mohawk and Upper Hudson rivers at Troy (average flow = 400 m<sup>3</sup>/s, highest in April, lowest in August). At the downstream end at the Battery the dominant tidal constituent is the semidiurnal, principal lunar constituent (the M<sub>2</sub> tide), with an evident spring/neap cycle. The amplitude of the tide is highest at the Battery (67 cm), lower at West Point (38 cm), and higher again at Albany (69 cm), a function of friction, geometry, and wave reflection. Meteorological events can also raise the water surface elevation at the downstream end and propagate into the estuary. Freshwater pulses can raise the water level at the upstream end and propagate downstream. Tidal flows are typically about an order of magnitude greater than net flows. The typical tidal excursion in the Hudson River Estuary is 5–10 km, but it can be as high as 20 km. Temperature varies seasonally in response to atmospheric heating and cooling with a typical August maximum of 25°C and January-February minimum of 1°C. Power plants cause local heating. The salinity intrusion varies with the tide and amount of upstream freshwater input. The location of the salt front is between Yonkers and Tappan Zee in the spring and just south of Poughkeepsie in the summer. Vertical salinity stratification exists in the area of salt intrusion setting up an estuarine circulation. The effect of wind is limited due to a prevailing wind direction perpendicular to the main axis and the presence of cliffs and hills. Dispersive processes include shear dispersion and tidal trapping, resulting in an overall longitudinal dispersion coefficient of 3–270 m<sup>2</sup>/s. The residence or flushing time in the freshwater reach is less than 40 d in the spring and about 200 d in the summer. In the area of salt intrusion, it is about 8 d.

1998 ◽  
Vol 34 (2-3) ◽  
pp. 214-222 ◽  
Author(s):  
M. G. Menon ◽  
R. J. Gibbs ◽  
A. Phillips

<em>Abstract.</em>—Our objectives were to determine if striped bass <em>Morone saxatilis </em>larvae were present in the East River and if so, could they have come from the Hudson River. To meet the first objective, we examined entrainment data collected at the Charles Poletti Power Plant (Poletti) during the years 1999 through 2002. To meet the second objective, we examined the simulated release of 168,000 neutrally buoyant, passive particles in the lower Hudson River Estuary, using a particle-tracking model that was linked to an estuarine circulation model. We also compared the abundance of striped bass post-yolk-sac larvae (PYSL) collected in the East River at Poletti with the abundance of striped bass PYSL collected in the Battery region of the lower Hudson River Estuary and the abundance of striped bass PYSL in the Battery region with freshwater flow in the estuary. Striped bass PYSL were collected by entrainment sampling in the East River at Poletti every year from 1999 through 2002. The striped bass PYSL in the East River probably came from the Hudson River Estuary because the median probability that neutrally buoyant, passive particles would be transported from the lower Hudson River Estuary to the upper East River and western Long Island Sound was 0.12, with a median transport time of 2 d, and because the mean density of striped bass PYSL was highest at Poletti and in the Battery region during the same year. The abundance of striped bass PYSL in the Battery region was higher when freshwater flow during May and early June was higher.


2010 ◽  
pp. 189-204 ◽  
Author(s):  
Karin E. Limburg ◽  
Kathryn A. Hattala ◽  
Andrew W. Kahnle ◽  
John R. Waldman

2010 ◽  
pp. 51-64 ◽  
Author(s):  
Robin E. Bell ◽  
Roger D. Flood ◽  
Suzanne Carbotte ◽  
William B. F. Ryan ◽  
Cecilia McHugh ◽  
...  

2001 ◽  
Vol 179 (1-2) ◽  
pp. 105-119 ◽  
Author(s):  
Jonathan D Woodruff ◽  
W.Rockwell Geyer ◽  
Christopher K Sommerfield ◽  
Neal W Driscoll

Sign in / Sign up

Export Citation Format

Share Document