Advances in Fisheries Bioengineering

<em>Abstract</em>.—Fish ladder designs that pass adult sturgeons are poorly studied. This is partly due to difficulties associated with obtaining and testing large adults. To learn about behavior and swimming of sturgeons in fish ladder environments, we observed juvenile lake sturgeon <em>Acipenser fulvescens </em>to determine the type of ladder opening that fish passed best. We also constructed a short fish ladder (6% slope) using the best opening type and determined the general usefulness of the ladder design to pass juvenile lake sturgeon, pallid sturgeon <em>Scaphirhynchus albus </em>and shovelnose sturgeon <EM>S</EM>. <em>platorynchus</em>. Lake sturgeon swam upstream through orifice and vertical openings better than through surface weir or weir and orifice openings. Because 37% of the fish hit the orifice when swimming upstream, and also, sturgeon could be damaged passing downstream through an orifice, we focused on testing a ladder design with vertical openings. A side-baffle ladder design that created vertical openings that alternated from side to side showed promise at passing the three species of sturgeons. All lake sturgeons (<EM>N </EM>= 15), most pallid sturgeons (12 of 22 fish, 55%), and 1 of 3 shovelnose sturgeons ascended the side-baffle design. Also, all sturgeon species moved safely downstream in the side-baffle ladder by passively drifting tail-first. Mean velocity in side-baffle openings was 60–75 cm/s, so sturgeons could use prolonged swimming speed to swim upstream. Vertical openings were wide enough for fish to partially erect their pectoral fins, likely a critical factor for maintaining balance. Our observations suggest that a ladder for adults should have vertical openings, enable fish to swim continuously and not stop at cross-channel barriers, have resting areas, enable fish to safely drift downstream, and enable fish to swim upstream using prolonged swim speed. The study of juvenile sturgeon behavior and swimming ability can contribute to developing a fish ladder for adults. This approach to fish ladder development can be used for other species with large adults.

2016 ◽  
Vol 7 (1) ◽  
pp. 198-204 ◽  
Author(s):  
David Deslauriers ◽  
Ryan Johnston ◽  
Steven R. Chipps

Abstract We assessed the effect of fin-curl on the swimming and station-holding ability of juvenile shovelnose sturgeon Scaphirhynchus platorynchus (mean fork length = 17 cm; mean weight = 16 g; n = 21) using a critical swimming speed test performed in a small swim chamber (90 L) at 20°C. We quantified fin-curl severity using the pectoral fin index. Results showed a positive relationship between pectoral fin index and critical swimming speed indicative of reduced swimming performance displayed by fish afflicted with a pectoral fin index &lt; 8%. Fin-curl severity, however, did not affect the station-holding ability of individual fish. Rather, fish affected with severe fin-curl were likely unable to use their pectoral fins to position their body adequately in the water column, which led to the early onset of fatigue. Results generated from this study should serve as an important consideration for future stocking practices.


2015 ◽  
Vol 93 (8) ◽  
pp. 645-654 ◽  
Author(s):  
J.D. Thiem ◽  
J.W. Dawson ◽  
A.C. Gleiss ◽  
E.G. Martins ◽  
A. Haro ◽  
...  

Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish. Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitional swimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired with simultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This study examined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency (TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration (VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 body lengths (BL)·s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types were combined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA, ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us are presented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantification of sturgeon swimming speed.


1986 ◽  
Vol 64 (10) ◽  
pp. 2137-2141 ◽  
Author(s):  
Paul W. Webb

Lake sturgeon, 15.7 cm in total length, have a 2-min critical swimming speed of 38.6 ± 4.2 cm∙s−1 (2.45 body lengths∙s−1) at 15 °C. Tail beat frequency (ƒ, Hz), amplitude (a, cm), and propulsive wavelength (λ, cm) increased linearly with swimming speed (U, cm∙s−1), according to the following equations: ƒ = 1.67 + 0.07 U, a = 3.2 + 0.020 U, and λ = 11.0 + 0.039 U. Tail depth and the cosine of the angle of the tail with the axis of motion were independent of swimming speed with mean values of 1.96 ± 0.08 cm and 0.7 ± 0.08, respectively. Swimming kinematics were generally similar to those of teleosts and anuran larvae, implying that body and caudal fin propulsive movements are conservative among actinopterygians and tetrapods. Swimming patterns did not provide for interactions between median fins that are considered to be important to shark swimming. The thrust generated by swimming sturgeon averages 82% that of trout of similar size, although the surface area of sturgeon is substantially lower. Therefore, drag per unit area of sturgeon is 3.5 times that of other actinopterygians, presumably because of the presence of scutes.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1419
Author(s):  
Janet Genz ◽  
Rachael Hicks

In fishes, environmental ion availability can have substantial effects on growth and development. This study examined the development of Lake Sturgeon in response to the varying environmental ion availability that they experience as part of a conservation stocking program. We reared sturgeon in natural water from the Coosa River, which had higher concentrations of Mg2+, Na+, and Zn2+ than standard hatchery conditions, while [Ca2+] at the Warm Springs National Fish Hatchery was 2× higher than in the Coosa River. Eggs were hatched in each water type and the larvae were sampled at time points before and after yolk absorption during the first 8 weeks of development. Total length and weight in WSNFH larvae were significantly higher than larvae in Coosa River water starting at 8 dph, indicating that growth was dependent on the different environmental ion levels. Concentrations of the ions of interest were also determined for whole-body acid digests of the exposed Lake Sturgeon. We found that Lake Sturgeon reared in Coosa River water had significantly higher magnesium and zinc than Lake Sturgeon reared in WSNFH water (p < 0.05), while calcium was significantly higher in WSNFH than Coosa River water. This difference shows that different environmental ion concentrations also impact the overall development of larval Lake Sturgeon.


1993 ◽  
Vol 50 (11) ◽  
pp. 2440-2447 ◽  
Author(s):  
R. S. McKinley ◽  
T. D. Singer ◽  
J. S. Ballantyne ◽  
G. Power

To establish the effects of hydroelectric generation on the health of lake sturgeon (Acipenser fulvescens), seasonal variations in plasma nonesterified fatty acids (NEFAs) upstream and downstream from hydroelectric stations were measured over a 2-yr period. Plasma NEFA profiles were also compared up- and downstream of the stations for differences in utilization of individual NEFA species as substrates for lipid oxidation. Significantly higher levels of total plasma NEFA were found in lake sturgeon upstream (2355 ± 395.9 nmol/mL) compared with those downstream (798 ± 133.5 nmol/mL) of the generating stations during the spring. The NEFA profiles for several key fatty acid species differed significantly among seasons up- and downstream of the facilities. In particular, during spring and summer, the levels of oleic acid (18:1n9) were highest upstream of the stations and levels of a polyunsaturated fatty acid, docosahexaenoic acid (22:6n3), were higher below rather than above the stations. The differences in plasma NEFA concentration may be attributed to altered nutritional status due to the varying flow regime located downstream of the hydroelectric stations.


2012 ◽  
Vol 81 (1) ◽  
pp. 35-53 ◽  
Author(s):  
P. S. Forsythe ◽  
K. T. Scribner ◽  
J. A. Crossman ◽  
A. Ragavendran ◽  
E. A. Baker ◽  
...  

Genome ◽  
2013 ◽  
Vol 56 (7) ◽  
pp. 407-414 ◽  
Author(s):  
Jacqueline M. Doyle ◽  
Gregor Siegmund ◽  
Joseph D. Ruhl ◽  
Soo Hyung Eo ◽  
Matthew C. Hale ◽  
...  

Historically, many population genetics studies have utilized microsatellite markers sampled at random from the genome and presumed to be selectively neutral. Recent studies, however, have shown that microsatellites can occur in transcribed regions, where they are more likely to be under selection. In this study, we mined microsatellites from transcriptomes generated by 454-pyrosequencing for three vertebrate species: lake sturgeon (Acipenser fulvescens), tiger salamander (Ambystoma tigrinum), and kangaroo rat (Dipodomys spectabilis). We evaluated (i) the occurrence of microsatellites across species; (ii) whether particular gene ontology terms were over-represented in genes that contained microsatellites; (iii) whether repeat motifs were located in untranslated regions or coding sequences of genes; and (iv) in silico polymorphism. Microsatellites were less common in tiger salamanders than in either lake sturgeon or kangaroo rats. Across libraries, trinucleotides were found more frequently than any other motif type, presumably because they do not cause frameshift mutations. By evaluating variation across reads assembled to a given contig, we were able to identify repeat motifs likely to be polymorphic. Our study represents one of the first comparative data sets on the distribution of vertebrate microsatellites within expressed genes. Our results reinforce the idea that microsatellites do not always occur in noncoding DNA, but commonly occur in expressed genes.


Sign in / Sign up

Export Citation Format

Share Document