Multispecies and Watershed Approaches to Freshwater Fish Conservation

<em>Abstract</em>—The Weber River is primarily known as a blue-ribbon Brown Trout <em>Salmo trutta </em>fishery; however, this river also supports populations of two jeopardized fishes, Bonneville Cutthroat Trout <em>Oncorhynchus clarkii utah </em>and Bluehead Sucker <em>Catostomus discobolus</em>. At least one population of Bonneville Cutthroat Trout in the Weber River provides an important and popular local fishery and expresses a fluvial life history where main-stem individuals grow large (300–500 mm total length) and migrate into small tributaries for spawning. Bluehead Suckers currently occur in the main stem of the Weber River, where they travel distances of 20 km between spawning and overwintering habitats. The habitat for both species has been fragmented by more than 300 barriers composed of irrigation diversions, road crossings, and utility stream crossings. Beginning in 2010, the Utah Division of Wildlife Resources and Trout Unlimited began undertaking barrier removal for native fish as a priority conservation action. Initially, the effort to reconnect habitat was slow and the lack of relationships with stakeholders such as water users, government agencies, private landowners, and utility companies was hampering progress with habitat reconnection. New barriers were being built at a faster rate than barriers were being removed. To build these relationships, a steering committee was formed to secure a small grant, hire a consulting firm, organize stakeholder meetings to identify broad stakeholder priorities, and write a watershed plan that ultimately identified Bonneville Cutthroat Trout and Bluehead Sucker as priority conservation targets. The watershed plan and subsequent stakeholder meetings developed a framework for the Weber River Partnership. The partnership holds an annual symposium where larger watershed issues are discussed. The symposium also provides a platform where all stakeholders can understand the activities occurring throughout the watershed and where there are opportunities to collaborate. The Weber River Partnership has provided a forum where fisheries managers have told the story of Bonneville Cutthroat Trout and Bluehead Sucker and the importance of habitat connectivity. Through collaborative relationships with nontraditional partners, the relevance of fisheries in the Weber River has been realized. Further relevance in the watershed is evidenced by the development of a wide range of on-the-ground actions. Fish passage has been re-established at three main-stem and four tributary barriers. Additional projects are in various stages of development, including a large fish ladder that will be built as part of a Federal Energy Regulatory Commission relicensing project at a small hydroelectric dam, and we continue to be contacted by water users with interest in developing irrigation diversion reconstruction projects that incorporate fish passage.

2005 ◽  
Vol 62 (12) ◽  
pp. 2784-2795 ◽  
Author(s):  
Peter McHugh ◽  
Phaedra Budy

Temperature-mediated competition (i.e., dominance shifts between species depending on temperature) may explain the segregation of salmonid species along altitudinal stream gradients. We evaluated this hypothesis for exotic brown trout (Salmo trutta) and native Bonneville cutthroat trout (Oncorhynchus clarkii utah) by rearing them in experimental sympatry and allopatry using enclosures constructed at six sites spaced along a 45-km segment of a mountain stream. For both species, we compared condition and growth between allopatric and sympatric treatment groups. We found that brown trout negatively affected cutthroat trout performance, whereas cutthroat trout failed to impart an effect in the reverse direction, regardless of temperature. Thus, we documented asymmetric competition between these species but found little evidence indicating that its outcome was influenced by temperature. Brown trout – cutthroat trout segregation is therefore unlikely to be due to temperature-mediated competition. Instead, brown trout may have displaced cutthroat trout from downstream areas through competition or other mechanisms, while abiotic factors preclude their (brown trout) invasion of upper elevations. Given the magnitude of effect observed in our study, we recommend that brown trout receive greater consideration in cutthroat trout conservation.


2018 ◽  
Vol 75 (3) ◽  
pp. 389-401 ◽  
Author(s):  
Kit Wheeler ◽  
Scott W. Miller ◽  
Todd A. Crowl

Migratory fishes can affect tributary ecosystem properties given their potential to introduce nutrients (fertilize) and physically modify habitat (engineer) during spawning. Nonetheless, migrant effects are frequently context-dependent, and it is useful to understand their strength relative to other potential ecosystem drivers. We examined whether tributary ecosystem properties varied in response to migrations of two adfluvial salmonids, taking advantage of differences in migration timing and reproductive strategy between species, as well as hydrogeomorphic differences between a pair of tributaries. For analyses, we used a model comparison approach to evaluate migrant effects relative to other possible drivers. We observed that Bonneville cutthroat trout (Oncorhynchus clarkii utah) engineered benthic chlorophyll a in redds, with reduction (51% ± 16% decrease) generally occurring during migrations. Contrary to expectations, migrant fertilization effects were not pronounced even in the more retentive tributary during migration by species (kokanee, Oncorhynchus nerka) that exhibited high postspawning mortality. Based on multimodel comparisons, isolated migrant effects were not the primary influence on measured ecosystem properties. Our findings underscore the need to consider different biotic and abiotic conditions that can mediate migratory fish effects.


2019 ◽  
Vol 76 (11) ◽  
pp. 2057-2068
Author(s):  
Mariah P. Mayfield ◽  
Thomas E. McMahon ◽  
Jay J. Rotella ◽  
Robert E. Gresswell ◽  
Trevor Selch ◽  
...  

Multistate modeling was used to estimate survival and movement of brown trout (Salmo trutta) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) in relation to copper concentrations in the mining-impacted Clark Fork River, Montana. Survival probability in the uppermost river segment, where dissolved copper concentrations frequently exceeded acute criteria for aquatic life (range: 31–60 days > 13.4 μg·L–1), was 2.1 times lower for brown trout and 122 times lower for westslope cutthroat trout compared with survival rates in the lowermost segment that had relatively low dissolved copper (0 days exceedance of acute concentration). Lowest survival for both species occurred in the spring–summer period when dissolved copper concentrations were elevated coincident with higher discharge. Movement among study segments was generally low, and cutthroat trout showed low movement into the uppermost river segment with the most elevated copper levels. Both species showed high rates of movement into tributaries, which coincided with their respective spawning migrations rather than as an apparent avoidance of elevated copper levels. The linkage between survival rate and level of copper exposure for both trout species suggests that additional removal of tailings deposits could improve survival rates.


2006 ◽  
Vol 63 (3) ◽  
pp. 660-669 ◽  
Author(s):  
Amy J Schrank ◽  
Frank J Rahel

We used multiple approaches to study summer movement patterns of Bonneville cutthroat trout (Oncorhynchus clarkii utah) in the Thomas Fork drainage of western Wyoming, USA. Our objectives were to (i) document summer movement patterns of cutthroat trout, especially as related to the concepts of local turnover and displacement distances, (ii) determine if fish size and condition were related to mobility, and (iii) compare summer movement patterns between years. Large fish (270–384 mm total length) monitored by radiotelemetry showed little movement during the summer as evidenced by a maximum displacement distance of <300 m and a low turnover rate among locations (0.21). For a broad size range of fish marked with visual implant tags (173–390 mm total length) in three study reaches, displacement distances were again low but turnover rate was high (>0.50 in most study reaches). This high turnover rate seemed to be driven mainly by movement among smaller fish as mobility declined with increasing fish size. Mobility also declined with decreasing body condition. Turnover rate in study reaches was higher during the summer of 1999 when stream flows were higher and water temperatures were cooler compared with the summer of 2000.


2005 ◽  
Vol 25 (3) ◽  
pp. 954-963 ◽  
Author(s):  
Warren T. Colyer ◽  
Jeffrey L. Kershner ◽  
Robert H. Hilderbrand

Author(s):  
Camille J. Macnaughton ◽  
Travis C. Durhack ◽  
Neil J. Mochnacz ◽  
Eva C. Enders

The physiology and behaviour of fish are strongly affected by ambient water temperature. Physiological traits related to metabolism, such as aerobic scope (AS), can be measured across temperature gradients and the resulting performance curve reflects the thermal niche that fish can occupy. We measured AS of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi) at 5, 10, 15, 20, and 22°C and compared temperature preference (Tpref) of the species to non-native Brook Trout, Brown Trout, and Rainbow Trout. Intermittent-flow respirometry experiments demonstrated that metabolic performance of Westslope Cutthroat Trout was optimal at ~15 °C and decreased substantially beyond this temperature, until lethal temperatures at ~25 °C. Adjusted preferred temperatures across species (Tpref) were comparatively high, ranging from 17.8-19.9 °C, with the highest Tpref observed for Westslope Cutthroat Trout. Results suggest that although Westslope Cutthroat Trout is considered a cold-water species, they do not prefer or perform as well in cold water (≤ 10°C), thus, can occupy a warmer thermal niche than previously thought. The metabolic performance curve (AS) can be used to develop species‐specific thermal criteria to delineate important thermal habitats and guide conservation and recovery actions for Westslope Cutthroat Trout.


Author(s):  
Ryan Kovach ◽  
Lisa Eby

The cutthroat trout Oncorhynchus clarki is Wyoming's only native trout. The Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) is designated as a "species of special concern" by a number of agencies and conservation groups. Although the Yellowstone cutthroat trout has recently avoided federal listing because of robust headwater populations (USFWS 2006), they face continued threats across their range. The fine-spotted Snake River native trout is a morphologically divergent ecotype of the Yellowstone subspecies, although it is not genetically distinguishable (Allendorf and Leary 1988, Novak et al. 2005). The Gros Ventre, an important tributary of the Snake River located partially in Grand Teton National Park, historically supported robust populations of fine­ spotted Snake River cutthroat trout. Principal threats to Gros Ventre native trout, especially in the lower end of the drainage within the park boundaries, include both water diversions (loss of water and fish into irrigation ditches) and presence of exotic species.


Author(s):  
Ernest R Keeley ◽  
Janet L Loxterman ◽  
Sammy L Matsaw ◽  
Zacharia M Njoroge ◽  
Meredith B Seiler ◽  
...  

The cutthroat trout, Oncorhynchus clarkii (Richardson, 1836), is one of the most widely distributed species of freshwater fish in western North America. Occupying a diverse range of habitats, they exhibit significant phenotypic variability that is often recognized by intraspecific taxonomy. Recent molecular phylogenies have described phylogenetic diversification across cutthroat trout populations, but no study has provided a range-wide morphological comparison of taxonomic divisions. In this study, we used linear and geometric-based morphometrics to determine if phylogenetic and subspecies divisions correspond to morphological variation in cutthroat trout, using replicate populations from throughout the geographic range of the species. Our data indicate significant morphological divergence of intraspecific categories in some, but not all, cutthroat trout subspecies. We also compare morphological distance measures with distance measures of mtDNA sequence divergence. DNA sequence divergence was positively correlated with morphological distance measures, indicating that morphologically more similar subspecies have lower sequence divergence in comparison to morphologically distant subspecies. Given these results, integrating both approaches to describing intraspecific variation may be necessary for developing a comprehensive conservation plan in wide-ranging species.


Sign in / Sign up

Export Citation Format

Share Document