Evaluation of Cold Mix Asphalt Concrete Properties

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Saad Issa Sarsam ◽  
Zahraa Ahmed Samor

Cold mix asphalt concrete is considered as a sustainable and green pavement, the aggregates and the binder can be mixed, laid, and compacted without consumption of energy. In this investigation, an attempt has been made to prepare cold mix asphalt concrete for base course construction. Two types of liquid binder, named Cationic emulsion Medium Setting CMS and Medium Curing cutback MC-250 have been implemented in preparation of Marshall specimens. Four types of additives, named Portland cement, coal fly ash, limestone dust and hydrated lime have been tried. Mixtures were subjected to aeration, then compacted. However, Specimens were subjected to curing before testing. It was concluded that mixtures with (optimum cutback content + 5% cement and 4 hours aeration and 24 hours curing at 60°C) and (optimum emulsion content +2% hydrated lime +3% cement or fly ash and 4 hours aeration at 25°C and 24 hours curing at 60°C) satisfies the volumetric and Marshall properties requirements for base course. It was recommended that increasing the aeration and curing periods is beneficial for the cold mix asphalt concrete in satisfying the specification requirements for base course. Keywords:Cold Mix; Asphalt Concrete; Cement; Lime; Fly ash; Marshall; Aeration; Curing;

Author(s):  
Ahmed M. Mohammed ◽  
Aqeel T. Fadhil

Mineral filler is the finest fraction of aggregate (smaller than 75 gm) used in the production of asphalt paving mixed. It is essential for producing a mixture that is dense, cohesive, durable, and resistant to water penetration. In spite of the fact that filler is very small proportion of the total aggregates in the mix, due to its rather high affinity for asphalt, the changes in the type of the filler can cause the paving mixture to perform satisfactorily during the design life or deteriorate rapidly under the effect of traffic and environmental impact. The objective of this study is to investigate the effect of mineral filler types (three types, limestone dust, Portland cement and hydrated lime) in the durability of asphalt concrete mixture. To achieve the objective of this study, Marshall mix design method was utilized to produce asphalt concrete mixes at their optimum asphalt content. The mixes were, then, tested to investigate their durability properties including moisture damage and fatigue characteristics. The results indicated that the mixes prepared with hydrated lime have superior resistance to moisture damage in comparison with Portland cement and lime stone dust. On the other hand, the mixes prepared with Portland cement type of filler showed better resistance to the fatigue failure of asphalt concrete pavement.


2018 ◽  
Vol 24 (5) ◽  
pp. 145 ◽  
Author(s):  
Amjad H. Albayati

Warm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA.  Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repeated load test) and fatigue characteristics (third point flexural beam test). The obtained results indicated that the performance of WMA is enhanced when using the hydrated lime as filler in comparison with the limestone dust and Portland cement fillers. Better fatigue life was obtained for WMA using hydrated lime filler in comparison with HMA. Regardless the filler type, the Marshall properties of WMA satisfy the requirement of local specification, other properties of WMA were relatively lower than the HMA.  


2016 ◽  
Vol 28 (5) ◽  
pp. 04015205 ◽  
Author(s):  
Akshay Gundla ◽  
Jose Medina ◽  
Padmini Gudipudi ◽  
Ryan Stevens ◽  
Ramadan Salim ◽  
...  

2011 ◽  
Vol 378-379 ◽  
pp. 389-392
Author(s):  
Tomáš Daněk ◽  
Jan Thomas ◽  
Jan Jelínek ◽  
Jiří Mališ

The aim of this study was to quantify the properties of sludge from iron and steel industry with high content of heavy metals, which has been solidified/stabilised by coal fly ash and Portland cement. The mixtures of sludge and coal fly ash and/or cement after of curing were used for tests. The porosity and permeability characteristics of solidified sludge were examined. To understand the behaviour of mixtures in the long term, the prepared mixtures were tested after 14, 28, 56 and 120 days.


2019 ◽  
Vol 25 (3) ◽  
pp. 340-347
Author(s):  
Ting WANG ◽  
Xiaojian GAO ◽  
Jian WANG

As a byproduct of phosphoric acid industry, phosphogypsum has many environmental problems. In order to recycle phosphogypsum to manufacture lightweight building materials, cementitious additives including fly ash, ground granulate blast-furnace slag and Portland cement were added to improve strength and water-resistance and different volume of foam was added to reduce the bulk density. The results show that hydrated lime can improve mechanical strength and water resistance of PG paste and the optimal dosage of hydrated lime is 6 %. Higher addition of fly ash or ground granulated blast-furnace slag improves the fluidity and delays the setting time of PG paste. The addition of 10 ~ 20 % fly ash results in a little reducing influence and 10 % ground granulated blast-furnace slag leads to an increase of 20.7 % for 28 days compressive strength of hardened PG specimen. The higher addition of Portland cement results in the better mechanical strength and water resistance of PG specimens. The 28day compressive and flexural strength reaches 25.9 MPa and 8.9 MPa respectively for the 25 % Portland cement mixture. PG based lightweight building materials can prepared by the addition of 60 % volume of air foam, with compressive strength of 1.7 MPa, bulk density of 521.7 kg/m3 and thermal conductivity of 0.0724 W/(m·K). DOI: http://dx.doi.org/10.5755/j01.ms.25.3.19910


2008 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Mohd Fadzil Arshad ◽  
Megat Azmi Megat Johari ◽  
Muhd Norhasri Muhd Sidek ◽  
Mazlee Mohd Noor

This paper presents the results of a laboratory study on the properties of Ternary Blended Cement (TBC) containing blends of ordinary Portland cement (OPC), Metakaolin (MK) and Fly Ash (FA). Analyses on the cementitious properties and engineering concrete properties containing TBC produced have been performed. The resulted was than compared with those of OPC and binary blended cementitious (BBC) systems containing OPC:MK and OPC:FA. In general, the results show that the inclusion of MK and FA in TBC alter the properties and performance of the cement paste and concrete to a certain degree as well as the resulting the TBC could potentially be used in the concrete construction industry.


Sign in / Sign up

Export Citation Format

Share Document