Construction Technology and Safety Management Method of Deep Foundation Pit Engineering under New Situation

2020 ◽  
2013 ◽  
Vol 718-720 ◽  
pp. 1938-1944
Author(s):  
You Sheng Zhao ◽  
Bin Zhou

t is easy to cause the Yangtze River embankment soil of slip even collapse to have a deep foundation pit construction adjacent to the Yangtze River outsideembankment,there are a lot of risk. In this paper, a new combining technique of construction for large caisson is presented. Based on the construction environment, theconstructiontechnology,the smaller earthwork excavation of deep high pressure rotary jet grouting pile with undrained caisson combined construction technology combined with monitoring data for the open caisson excavation control is adopted. It has achieved relatively good results and summarized the advantages of deep high pressure rotary jet grouting pile with undrained caisson combined construction technology in engineering application owing the reference value for engineering applications.


2014 ◽  
Vol 919-921 ◽  
pp. 1411-1415
Author(s):  
Bo Liu ◽  
Pei Sheng Xi

One deep foundation pit in Hefei urban rail transit project is adjacent to the existed expressway subgrade, it's in the unsymmetrical loaded state. The control of foundation pit deformation and the safety of subgrade must be strictly ensured. Based on it, the design scheme of supporting system, the construction processes of earth excavation, top beam, concrete support and steel support was introduced. The horizontal displacement of fender piles and the settlement of subgrade was monitored. The field monitoring results indicate, there exists a great difference between the retaining structure deformation under the action of unsymmetrical load and the deformation under the action of symmetrical load, the horizontal displacement of fender piles on the side of subgrade is bigger than the other side, the upper pile appears to be a "drift" towards the lower-load side; although the absolute value of horizontal displacement of fender piles and settlement of subgrade seems to be a big number, the relative value is small compared to the whole length of fender pile and expressway, meeting relevant standard requirements. The deep foundation pit and expressway kept safe and stable in the all periods of construction, no one accident was occurred during that time. Thus, it can be seen that this construction technology is effective in controlling the deformation during excavation, which can provide a reference for similar projects in design and construction in the future.


2013 ◽  
Vol 368-370 ◽  
pp. 1443-1449
Author(s):  
Jun Yang Wei ◽  
Bao Tian Wang ◽  
Jing Hua Zhang ◽  
Bin Zhou

It is easy to cause Yangtze River embankment soil slip or even collapse to have a deep foundation pit construction adjacent to Yangtze River outside embankment,with lots of risk . A new combined construction technique for large caisson is presented. The construction technology, the earthwork excavation of deep high pressure jet grouting pile combined with undrained open caisson construction technology, with data monitoring for the open caisson excavation control is adopted. This study mainly summarizes the advantages of deep high pressure jet grouting pile combined with undrained caisson combined construction technology engineering application, and describes the process of the combined construction and measures of deviation correction.The new combining construction technique has made a relatively effective protection for the Yangtze River levee and its ecological environment,having great engineering application value to some similar engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Wenhan Fan ◽  
Jianliang Zhou ◽  
Jianming Zhou ◽  
Dandan Liu ◽  
Wenjing Shen ◽  
...  

With the huge demand for building underground spaces, deep foundation pits are becoming more and more common in underground construction. Due to the serious effects associated with accidents that occur in deep foundation pits, it is very important for underground construction safety management to be proactive, targeted, and effective. This research develops a conceptual framework adopting BIM and IoT to aid the identification and evaluation of hazards in deep foundation pit construction sites using an automated early warning system. Based on the accident analysis, the system framework of Safety Management System of Deep Foundation Pits (SMSoDFP) is proposed; it includes a function requirement, system modules, and information needs. Further, the implementation principles are studied; they cover hazardous areas, namely, visualization, personnel position monitoring, structural deformation monitoring, and automatic warning. Finally, a case study is used to demonstrate the effectiveness and feasibility of the system proposed. This research provides suggestions for on-site management and information integration of deep foundation pits, with a view to improving the safety management efficiency of construction sites and reducing accidents.


Sign in / Sign up

Export Citation Format

Share Document