scholarly journals Simulation-based Analysis of a Dynamic Voltage Restorer under Different Voltage Sags with the Utilization of a PI Controller

2020 ◽  
Vol 10 (4) ◽  
pp. 5889-5895
Author(s):  
A. H. Soomro ◽  
A. S. Larik ◽  
M. A. Mahar ◽  
A. A. Sahito ◽  
I. A. Sohu

Power quality problems are becoming a major issue. Every utility company consumer desires to receive steady-state voltage, i.e. a sinusoidal waveform of constant frequency as generated at power stations, but the influence of disturbances in the shape of sags and swells, interruptions, transients and harmonic distortions which affect power quality, resulting in loss of data, damaged equipment, and augmented cost. The most powerful voltage disturbance is the sag voltage. In this paper, a Dynamic Voltage Restorer (DVR) is proposed for sag voltage compensation. It is cost-effective and protects critical loads in a good manner from balanced or unbalanced sag voltage. Control strategy (such as a PI controller) is adopted with DVR topology and the performance of such a device with the proposed controller is analyzed through simulation in MATLAB/Simulink. Three types of faults are utilized, which are available in MATLAB/Simulink pack, for obtaining the sag voltage. The specific range of total harmonic distortion percentage is also discussed. After the result validation of the DVR topology in MATLAB/Simulink, it has been seen that the proposed topology is able to compensate the sag voltage of any type of fault and reduce the unbalancing and voltage distortions of the grid.

Author(s):  
Jose M. Lozano ◽  
Juan M. Ramirez

A dynamic voltage restorer (DVR) based on an AC-AC converter is presented. It is able to compensate different common disturbances in distribution systems, with the purpose of improving the power quality delivered to the users. A prototype has been assembled to test the feasibility of the proposition. In this paper a modulation strategy based on the well known space vector modulation (SVM) algorithm is presented in order to synthesize controllable voltages in magnitude and waveform for compensation purposes. Unbalanced and harmonic distortion conditions in the supply voltages are taken into account. These results positively confirm the design, simulation, assembling, and expectations about the device.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 214
Author(s):  
Te Jaswini Sarwade ◽  
V S. Jape ◽  
D G. Bharadwaj

The existence of non-standard currents, frequencies and voltages enhances the Power Quality (PQ) problems. Power consumed by the consumers and losses occurred in power system are deciding factors for the utility to determine the performance of the power system in terms of Power Quality. These Power Quality problems lead to failure of end user equipments as well as creates disturbances in power distribution network, thereby deteriorates residual life assessment of major equipments used in substation. The PQ problems can be characterized as voltage surges, sags, swells, harmonic distortions, etc. There are many reasons for the determination of Power Quality. The loads used by the consumers of electricity abnormally leads to deprove the Power Quality. Low power factor loads are taken care of by the utilities in the form of financial penalty. However, occurrence of harmonics, voltage swells and sags in the system is the most powerful reason behind degradation of Power Quality. To mitigate these issues, use of Custom Power Devices (CPD) in the distribution network is the most significant solution. Paper presents the design of the CPD like Dynamic Voltage Restorer (DVR) using two control strategies i.e. PI Controller and Fuzzy Logic Controller (FLC). MATLAB/SIMULINK is used to analyze the effectiveness of these control strategies. 


2015 ◽  
Vol 785 ◽  
pp. 409-413
Author(s):  
Eimi Diyana Rosli ◽  
Rijalul Fahmi bin Mustapa ◽  
M.N. Hidayat

Power delivered to consumer from utilities is susceptible to power quality problems. The most common power quality problems are voltage sag. Modern equipment nowadays are prone to problems associated with voltage sag. Such problems can be apprehended by several mitigation methods. This paper will discuss voltage sag mitigation method by eliminating the injection transformer in ordinary Dynamic Voltage Restorer (DVR) and applying Single Phase Matrix Converter (SPMC) in a single phase DVR topologies. The objective of this paper is to investigate the potential mitigation method without the injection transformer in the DVR topology. DVR circuit will be constructed and simulated using MATLAB/SIMULINK software. It is hoped that the result of this work will provide a simpler mitigation technique where existing DVR topology can be constructed with less component that provides unnecessary losses in the DVR itself.IndexTerms—Injection Transformer, DVR, SPMC, MATLAB/SIMULINK.


Author(s):  
P. Sathish Babu ◽  
C. K. Sundarabalan ◽  
C. Balasundar

A novel optimal method of a Dynamic Voltage Restorer (DVR) supported by solid oxide fuel cell (SOFC) and its simplified topological structure are proposed. DVR is a power-electronic converter-based device, and the objective of the DVR control system is to minimize supply voltage variations at the load terminals. This is attained by generating a compensating voltage at the series injection transformer. Conventional controllers are mathematical model-based; also, the particular system varies widely, and nonlinear factors make the PI controller tuning more challenging to some extent. As a result, an intelligent PI optimization control method is essential. This paper proposes Hybrid PSOGSA to search for optimal values of two PI control parameters for the [Formula: see text]–[Formula: see text]-axis components by considering a novel bi-objective function. The performance of the test system is analyzed for five test scenarios using the proposed PI controller with SPSO-optimized and Ziegler–Nichols tuning methods. DVR system provides an excellent control performance in the transient and steady states for compensating the sensitive load voltages with almost zero steady-state errors. Simulation results show that the proposed approach can provide improved performance than PSO-optimized and classical PI controllers for the power quality indices measured.


Author(s):  
Ali Basim Mohammed ◽  
Mohd Aifaa Mohd Ariff

This paper represents a new configuration of the dynamic voltage restorer consists of approximate classical sliding mode differentiator (ACSMD) with the terminal sliding mode controller (TSMC) as the nonlinear sliding variable. In this study, the proposed structure of the DVR is utilized to maintain the magnitude of the load voltage at a constant value, maintain the system total harmonic distortion (THD), boost the robustness property and minimize the steady-state error. The power quality has received more interest due to the implementation of various industrial devices and critical loads at the distribution side. Nowadays, the main challenges in power quality in the system are voltage sags/swells, harmonics and voltage imbalance. Various devices are utilized to address these challenges. The dynamic voltage restorer is one of these devices. It is connected in series with the distribution system and injects a proper voltage magnitude to maintain the voltage load at the constant value. In this paper, the DVR model with the ASMF and TSMC is implemented in using MATLAB/Simulink. The proposed controller is evaluated using the standard voltage sag indices.


In the present energy scenario, one of major problems is with Power quality. Power quality came to more relevant, focused, with the addition of suitable equipment, where its behavior is very much important to the power supply quality. Power quality issue is a phenomenon noted as a not usual standard current, frequency or voltage which may results in a failure of sophiscated devices. The main issue focuses at the power swell & sag. In the paper, authors present a novel methodology for the prevention of voltage sag & swell. To rectify this issue, customized power equipments are adopted. Among them, Dynamic Voltage Restorer (DVR), the best as well as right advanced customized power equipment used in power distribution networks. The advantages include reduced price, low size, and its good transient response to the interferences. This work explain the MATLAB results of a Dynamic Voltage Restorer (DVR) modeling and analysis. Here, conventional controller like PI type and GA Tuned PI controller are used for comparison. In the offered method, PI controller parameters using GA Tuned implemented is being replaced by the traditional PI controller in order to develop the performance of the plant. The aim of the controller is made faster than conventional technique based controller. By MATLAB simulation tool, the performance can be studied.


Author(s):  
R.J. SATPUTALEY ◽  
V.B. BORGHATE ◽  
K.L. THAKARE ◽  
N.R. PATNE

The Dynamic Voltage Restorer (DVR) has become popular as a cost effective solution for the protection of sensitive loads from voltage sag. By providing proper control scheme the DVR can also be utilized for eliminating other power quality problem such as voltage unbalance and voltage as well as current harmonics This paper presents control system based on repetitive controller to compensate voltage sag, voltage unbalance and voltage harmonics and current harmonics The well –developed graphical facilities available in PSCAD/EMTDC are used to carry out all modeling aspects of repetitive controller.


Sign in / Sign up

Export Citation Format

Share Document