scholarly journals Influence of Citrobacter freundii Infection on Ion Levels of Model Organism Galleria mellonella Larvae

Author(s):  
Serkan SUGEÇTİ
2019 ◽  
Vol 51 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Monika Staniszewska ◽  
Małgorzata Gizińska ◽  
Michalina Kazek ◽  
Roberto de Jesús González-Hernández ◽  
Zbigniew Ochal ◽  
...  

2021 ◽  
Author(s):  
Sebastian Bruchmann ◽  
Theresa Feltwell ◽  
Julian Parkhill ◽  
Francesca L Short

Abstract Infections caused by Klebsiella pneumoniae are a major public health threat. Extensively drug-resistant and even pan-resistant strains have been reported. Understanding K. pneumoniae pathogenesis is hampered by the fact that murine models of infection offer limited resolution for non-hypervirulent strains which cause the majority of infections. The insect Galleria mellonella larva is a widely used alternative model organism for bacterial pathogens. We have performed genome-scale fitness profiling of a multidrug-resistant K. pneumoniae ST258 strain during infection of G. mellonella, to determine if this model is suitable for large-scale virulence factor discovery in this pathogen. Our results demonstrated a dominant role for surface polysaccharides in infection, with contributions from siderophores, cell envelope proteins, purine biosynthesis genes and additional genes of unknown function. Comparison with a hypervirulent strain, ATCC 43816, revealed substantial overlap in important infection-related genes, as well as additional putative virulence factors specific to ST258, reflecting strain-dependent fitness effects. Our analysis also identified a role for the metalloregulatory protein NfeR (YqjI) in virulence. Overall, this study offers new insight into the infection fitness landscape of K. pneumoniae, and provides a framework for using the highly flexible and easily scalable G. mellonella infection model to dissect molecular virulence mechanisms of bacterial pathogens.


2021 ◽  
Author(s):  
Daniel F Q Smith ◽  
Arturo Casadevall

Abstract In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher-throughput, and easier compared to vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonellqa from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.


2019 ◽  
Vol 7 (3) ◽  
pp. 85 ◽  
Author(s):  
Athina Andrea ◽  
Karen Krogfelt ◽  
Håvard Jenssen

Among non-mammalian infection model organisms, the larvae of the greater wax moth Galleria mellonella have seen increasing popularity in recent years. Unlike other invertebrate models, these larvae can be incubated at 37 °C and can be dosed relatively precisely. Despite the increasing number of publications describing the use of this model organism, there is a high variability with regard to how the model is produced in different laboratories, with respect to larva size, age, origin, storage, and rest periods, as well as dosing for infection and treatment. Here, we provide suggestions regarding how some of these factors can be approached, to facilitate the comparability of studies between different laboratories. We introduce a linear regression curve correlating the total larva weight to the liquid volume in order to estimate the in vivo concentration of pathogens and the administered drug concentration. Finally, we discuss several other aspects, including in vivo antibiotic stability in larvae, the infection doses for different pathogens and suggest guidelines for larvae selection.


2021 ◽  
Author(s):  
Hue Dinh ◽  
Lucie Semenec ◽  
Sheemal S Kumar ◽  
Francesca L Short ◽  
Amy K Cain

Abstract Galleria mellonella has risen to fame as an invertebrate model organism given its ethical advantages, low maintenance costs, rapid reproduction time, short life cycle, high number of progeny, tolerance for human body temperatures, innate immune system and similarities to mammalian host models. It is increasingly being utilised to evaluate in vivo toxicity and efficacy of chemical compounds and antimicrobials, modelling microbial (bacterial, fungal, viral) pathogenicity and assessing host-pathogen interaction during infection. During this molecular age of genomic, transcriptomic, proteomic, and genetic manipulation approaches, our understanding of microbial pathogenicity and host-pathogen interactions has deepened from high-throughput molecular studies performed in G. mellonella. In this review, we describe the use of G. mellonella in a broad range of studies involving omics, drug resistance, functional analysis and host-microbial community relationships. The future of G. mellonella in the molecular age is bright, with a multitude of new approaches and uses for this model from clinical to biotechnological on the horizon.


Sign in / Sign up

Export Citation Format

Share Document