scholarly journals Recurrence Decompositions in Finsler Space

2020 ◽  
Vol 1 (1) ◽  
pp. 77-86
Author(s):  
Adel M. A. Al-Qashbari

Finsler geometry is a kind of differential geometry originated by P. Finsler. Indeed, Finsler geometry has several uses in a wide variety and it is playing an important role in differential geometry and applied mathematics of problems in physics relative, manual footprint. It is usually considered as a generalization of Riemannian geometry. In the present paper, we introduced some types of generalized $W^{h}$ -birecurrent Finsler space, generalized $W^{h}$ -birecurrent affinely connected space and we defined a Finsler space $F_{n}$ for Weyl's projective curvature tensor $W_{jkh}^{i}$ satisfies the generalized-birecurrence condition with respect to Cartan's connection parameters $\Gamma ^{\ast i}_{kh}$, such that given by the condition (\ref{2.1}), where $\left\vert m\right. \left\vert n\right. $ is\ h-covariant derivative of second order (Cartan's second kind covariant differential operator) with respect to $x^{m}$ \ and $x^{n}$ ,\ successively, $\lambda _{mn}$ and $\mu _{mn~}$ are\ non-null covariant vectors field and such space is called as a generalized $W^{h}$ -birecurrent\ space and denoted briefly by $GW^{h}$ - $BRF_{n}$ . We have obtained some theorems of generalized $W^{h}$ -birecurrent affinely connected space for the h-covariant derivative of the second order for Wely's projective torsion tensor $~W_{kh}^{i}$ , Wely's projective deviation tensor $~W_{h}^{i}$ in our space. We have obtained the necessary and sufficient condition forsome tensors in our space.

1964 ◽  
Vol 16 ◽  
pp. 549-560 ◽  
Author(s):  
J. R. Vanstone

In this paper we shall consider a generalization of a very old problem in differential geometry; namely, given a second-order covariant tensor field aij(x) on an n-dimensional manifold, when does there exist a connection such that the covariant derivative, defined byvanishes?The earliest question of this type arose in the case when is symmetric and positive definite. A solution connection of the problem is then given by the Christoffel symbols


The paper is a continuation of the last paper communicated to these 'Proceedings.' In that paper, which we shall refer to as the first paper, a more general expression for space curvature was obtained than that which occurs in Riemannian geometry, by a modification of the Riemannian covariant derivative and by the use of a fifth co-ordinate. By means of a particular substitution (∆ μσ σ = 1/ψ ∂ψ/∂x μ ) it was shown that this curvature takes the form of the second order equation of quantum mechanics. It is not a matrix equation, however but one which has the character of the wave equation as it occurred in the earlier form of the quantum theory. But it contains additional terms, all of which can be readily accounted for in physics, expect on which suggested an identification with energy of the spin.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Emrah Dokur ◽  
Salim Ceyhan ◽  
Mehmet Kurban

To construct the geometry in nonflat spaces in order to understand nature has great importance in terms of applied science. Finsler geometry allows accurate modeling and describing ability for asymmetric structures in this application area. In this paper, two-dimensional Finsler space metric function is obtained for Weibull distribution which is used in many applications in this area such as wind speed modeling. The metric definition for two-parameter Weibull probability density function which has shape (k) and scale (c) parameters in two-dimensional Finsler space is realized using a different approach by Finsler geometry. In addition, new probability and cumulative probability density functions based on Finsler geometry are proposed which can be used in many real world applications. For future studies, it is aimed at proposing more accurate models by using this novel approach than the models which have two-parameter Weibull probability density function, especially used for determination of wind energy potential of a region.


2002 ◽  
Vol 34 (3) ◽  
pp. 329-340 ◽  
Author(s):  
BRAD LACKEY

Using Chern's method of transgression, the Euler class of a compact orientable Riemann–Finsler space is represented by polynomials in the connection and curvature matrices of a torsion-free connection. When using the Chern connection (and hence the Christoffel–Levi–Civita connection in the Riemannian case), this result extends the Gauss–Bonnet formula of Bao and Chern to Finsler spaces whose indicatrices need not have constant volume.


2021 ◽  
Vol 2 (2) ◽  
pp. 30-37
Author(s):  
Alaa A. Abdallah ◽  
A. A. Navlekar ◽  
Kirtiwant P. Ghadle

In this paper, we study the relationship between Cartan's second curvature tensor $P_{jkh}^{i}$ and $(h) hv-$torsion tensor $C_{jk}^{i}$ in sense of Berwald. Moreover, we discuss the necessary and sufficient condition for some tensors which satisfy a recurrence property in $BC$-$RF_{n}$, $P2$-Like-$BC$-$RF_{n}$, $P^{\ast }$-$BC$-$RF_{n}$ and $P$-reducible-$BC-RF_{n}$.


1962 ◽  
Vol 14 ◽  
pp. 87-112 ◽  
Author(s):  
J. R. Vanstone

Modern differential geometry may be said to date from Riemann's famous lecture of 1854 (9), in which a distance function of the form F(xi, dxi) = (γij(x)dxidxj½ was proposed. The applications of the consequent geometry were many and varied. Examples are Synge's geometrization of mechanics (15), Riesz’ approach to linear elliptic partial differential equations (10), and the well-known general theory of relativity of Einstein.Meanwhile the results of Caratheodory (4) in the calculus of variations led Finsler in 1918 to introduce a generalization of the Riemannian metric function (6). The geometry which arose was more fully developed by Berwald (2) and Synge (14) about 1925 and later by Cartan (5), Busemann, and Rund. It was then possible to extend the applications of Riemannian geometry.


The differential equations arising in most branches of applied mathematics are linear equations of the second order. Internal ballistics, which is the dynamics of the motion of the shot in a gun, requires, except with the simplest assumptions, the discussion of non-linear differential equations of the first and second orders. The writer has shown in a previous paper* how such non-linear equations arise when the pressure-index a in the rate-of-burning equation differs from unity, although only the simplified case of non-resisted motion was there considered. It is proposed in the present investigation to examine some cases of resisted motion taking the pressure-index equal to unity, to give some extensions of the previous work, and to consider, so far as is possible, the nature and the solution of the types of differential equations which arise.


2019 ◽  
Vol 33 (1) ◽  
pp. 1-10
Author(s):  
Khageswar Mandal

 This paper considered about the β-Change of Finsler metric L given by L*= f(L, β), where f is any positively homogeneous function of degree one in L and β and obtained the β-Change by Finsler metric of C-reducible Finsler spaces. Also further obtained the condition that a C-reducible Finsler space is transformed to a C-reducible Finsler space by a β-change of Finsler metric.


Sign in / Sign up

Export Citation Format

Share Document