Effects of different drip irrigation patterns on water distribution in potted Yunnan red loam and yellow-sand soil and pepper growth

2018 ◽  
Vol 118 ◽  
pp. 1-11
Author(s):  
Yijie Zhang ◽  
Zhenjie Yang ◽  
Haolin Yang ◽  
Shiyu Song ◽  
Wenqi Xu ◽  
...  
2013 ◽  
Vol 39 (9) ◽  
pp. 1687 ◽  
Author(s):  
Zi-Jin NIE ◽  
Yuan-Quan CHEN ◽  
Jian-Sheng ZHANG ◽  
Jiang-Tao SHI ◽  
Chao LI ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2276
Author(s):  
David Lozano ◽  
Natividad Ruiz ◽  
Rafael Baeza ◽  
Juana I. Contreras ◽  
Pedro Gavilán

Developing an appropriate irrigation schedule is essential in order to save water while at the same time maintaining high crop yields. The standard procedures of the field evaluation of distribution uniformity do not take into account the effects of the filling and emptying phases of the irrigation system. We hypothesized that, in sloping sandy soils, when short drip irrigation pulses are applied it is important to take into account the total water applied from the beginning of irrigation until the emptying of the irrigation system. To compute distribution uniformity, we sought to characterize the filling, stable pressure, and emptying phases of a standard strawberry irrigation system. We found that the shorter the time of the irrigation pulse, the worse the distribution uniformity and the potential application efficiency or zero deficit are. This effect occurs because as the volume of water applied during filling and emptying phases increases, the values of the irrigation performance indicators decrease. Including filling and emptying phases as causes of non-uniformity has practical implications for the management of drip irrigation systems in sloping sandy soils.


EDIS ◽  
2013 ◽  
Vol 2013 (4) ◽  
Author(s):  
Lincoln Zotarelli ◽  
Libby Rens ◽  
Charles Barrett ◽  
Daniel J. Cantliffe ◽  
Michael D. Dukes ◽  
...  

In terms of water use efficiency, the traditional seepage irrigation systems commonly used in areas with high water tables are one of the most inefficient methods of irrigation, though some irrigation management practices can contribute to better soil moisture uniformity. Subsurface drip irrigation systems apply water below the soil surface by microirrigation, improving the water distribution and time required to raise the water table for seepage irrigation. This 6-page fact sheet was written by Lincoln Zotarelli, Libby Rens, Charles Barrett, Daniel J. Cantliffe, Michael D. Dukes, Mark Clark, and Steven Lands, and published by the UF Department of Horticultural Sciences, March 2013. http://edis.ifas.ufl.edu/hs1217


2020 ◽  
Author(s):  
Kévin Lequette ◽  
Nassim Ait-Mouheb ◽  
Nicolas Adam ◽  
Marine Muffat-Jeandet ◽  
Valérie Bru-Adan ◽  
...  

AbstractDripper clogging reduces the performance and service life of a drip irrigation system. The impact of chlorination (1.5 ppm of free chlorine during 1 h application) and pressure flushing (0.18 MPa) on the biofouling of non-pressure-compensating drippers fed by real reclaimed wastewater was studied at lab scale using Optical Coherence Tomography. The effect of these treatments on microbial composition (bacteria and eukaryotes) was also investigated by High-throughput DNA sequencing. Biofouling was mainly observed in inlet, outlet and return areas of the drippers. Chlorination limited biofilm development mainly in the mainstream of the milli-labyrinth channel. It was more efficient when combined with pressure flushing. Moreover, chlorination was more efficient in maintaining the water distribution uniformity. It reduced the bacterial concentration and the diversity of the dripper biofilms compared to the pressure flushing method. This method strongly modified the microbial communities, promoting chlorine-resistant bacteria such as Comamonadaceae or Azospira. Inversely, several bacterial groups were identified as sensitive to chlorination such as Chloroflexi and Planctomycetes. Nevertheless, one month after stopping the treatments the bacterial diversity re-increased and the chlorine-sensitive bacteria such as Chloroflexi phylum and the Saprospiraceae, Spirochaetaceae, Christensenellaceae and Hydrogenophilaceae families re-emerged with the growth of biofouling, highlighting the resilience of the bacteria from drippers. Based on PCoA analyses, the structure of the communities still clustered separately from never-chlorinated drippers, showing that the effect of chlorination was still present one month after stopping the treatment.HighlightsThe fouling of drippers is a bottleneck for drip irrigation using reclaimed wastewaterBiofouling was lowest when chlorination was combined with pressure flushingThe β-Proteobacteria and Firmicutes contain chlorine resistant bacteriaThe decrease of Chloroflexi by chlorination was transitoryThe bacterial community was resilient after the interruption of cleaning events


2014 ◽  
Vol 9 (30) ◽  
pp. 2298-2305 ◽  
Author(s):  
Evans ASENSO ◽  
Jiuhao LI ◽  
Hai-Bo CHEN ◽  
Emmanuel OFORI ◽  
Fuseini ISSAKA ◽  
...  

2007 ◽  
Vol 6 (1) ◽  
pp. 116-123 ◽  
Author(s):  
N. Lazarovitch ◽  
A. W. Warrick ◽  
A. Furman ◽  
J. Šimůnek

Sign in / Sign up

Export Citation Format

Share Document