Effect of the wall thickness of an overflow pipe on the short-circuit flow

2020 ◽  
Vol 185 ◽  
pp. 124-131
Author(s):  
Yung-Sheng Lai ◽  
Rome-Ming Wu
2014 ◽  
Vol 670-671 ◽  
pp. 655-658 ◽  
Author(s):  
Xian Ming Sun ◽  
Lei Wei

For the hydrocyclone’ separation efficiency affects by many factors, this paper combined Reynolds stress model and SIMPLEC algorithm of Fluent software with orthogonal test to simulate hydrocyclone’s operating process and analysis the flow field. Different overflow pipe wall thickness values (4mm, 8mm, 12mm), volume fraction values (1%, 5%, 10%) and inlet velocities (3m/s, 4m/s, 5m/s) was considered as the separation efficiency affective factors. Results show that the overflow pipe wall thickness has greatest influence on separation efficiency. The inlet velocity is the second and the volume fraction value is the last. The optimal combination is the overflow pipe wall thickness value 8mm, the volume fraction 5% and the inlet velocity 5m/s. The overflow pipe wall thickness value increasing can decrease the turbulent kinetic energy and increase the stability of hydrocyclone flow field.


Author(s):  
L. P. Lemaire ◽  
D. E. Fornwalt ◽  
F. S. Pettit ◽  
B. H. Kear

Oxidation resistant alloys depend on the formation of a continuous layer of protective oxide scale during the oxidation process. The initial stages of oxidation of multi-component alloys can be quite complex, since numerous metal oxides can be formed. For oxidation resistance, the composition is adjusted so that selective oxidation occurs of that element whose oxide affords the most protection. Ideally, the protective oxide scale should be i) structurally perfect, so as to avoid short-circuit diffusion paths, and ii) strongly adherent to the alloy substrate, which minimizes spalling in response to thermal cycling. Small concentrations (∼ 0.1%) of certain reactive elements, such as yttrium, markedly improve the adherence of oxide scales in many alloy systems.


1996 ◽  
Vol 35 (05) ◽  
pp. 146-152 ◽  
Author(s):  
A. Kögler ◽  
H.-A. Schmitt ◽  
D. Emrich ◽  
H. Kreuzer ◽  
D. L. Munz ◽  
...  

SummaryThis prospective study assessed myocardial viability in 30 patients with coronary heart disease and persistent defects despite reinjection on TI-201 single-photon computed tomography (SPECT). In each patient, three observers graded TI-201 uptake in 7 left ventricular wall segments. Gradient-echo magnetic resonance imaging in the region of the persistent defect generated 12 to 16 short axis views representing a cardiac cycle. A total of 120 segments were analyzed. Mean end-diastolic wall thickness and systolic wall thickening (± SD) was 11.5 ± 2.7 mm and 5.8 ± 3.9 mm in 48 segments with normal TI-201 uptake, 10.1 ± 3.4 mm and 3.7 ± 3.1 mm in 31 with reversible lesions, 11.3 ± 2.8 mm and 3.3 ± 1.9 mm in 10 with mild persistent defects, 9.2 ± 2.9 mm and 3.2 ±2.2 mm in 15 with moderate persistent defects, 5.8 ± 1.7 mm and 1.3 ± 1.4 mm in 16 with severe persistent defects, respectively. Significant differences in mean end-diastolic wall thickness (p <0.0005) and systolic wall thickening (p <0.005) were found only between segments with severe persistent defects and all other groups, but not among the other groups. On follow-up in 11 patients after revascularization, 6 segments with mild-to-moderate persistent defects showed improvement in mean systolic wall thickening that was not seen in 6 other segments with severe persistent defects. These data indicate that most myocardial segments with mild and moderate persistent TI-201 defects after reinjection still contain viable tissue. Segments with severe persistent defects, however, represent predominantly nonviable myocardium without contractile function.


Endoscopy ◽  
2006 ◽  
Vol 38 (11) ◽  
Author(s):  
A Patel ◽  
DL Bovell ◽  
AD Corbett ◽  
RJ Holdsworth

1995 ◽  
Vol 32 (3) ◽  
pp. 453
Author(s):  
Sung Hoon Chung ◽  
Hyun Sook Kim ◽  
In Oak Ahn ◽  
Goo Lee ◽  
Joon Hee Joh

Sign in / Sign up

Export Citation Format

Share Document