Speeding up the successive clarification and bioremediation processes of anthracene-containing water using graphite/bacteria integrated columns

2021 ◽  
Vol 223 ◽  
pp. 154-166
Author(s):  
Tarek H. Taha ◽  
A.E. Mansy ◽  
Asmaa M. Youssif ◽  
Saad Alamri ◽  
Mahmoud Moustafa
2010 ◽  
Vol 28 (12) ◽  
pp. 1211-1221 ◽  
Author(s):  
H. Yu ◽  
G. Huang ◽  
B. Zhang ◽  
X. Zhang ◽  
Y. Cai

2001 ◽  
Vol 67 (2) ◽  
pp. 769-773 ◽  
Author(s):  
Murielle Roux ◽  
Géraldine Sarret ◽  
Isabelle Pignot-Paintrand ◽  
Marc Fontecave ◽  
Jacques Coves

ABSTRACT Ralstonia metallidurans CH34 (formerlyAlcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metalliduransCH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites.


2019 ◽  
pp. 277-302
Author(s):  
Jeyabalan Sangeetha ◽  
Devarajan Thangadurai ◽  
Ravichandra Hospet ◽  
Purushotham Prathima ◽  
Shrinivas Jadhav ◽  
...  

2019 ◽  
Author(s):  
Luz Breton-Deval ◽  
Ayixon Sanchez-Reyes ◽  
Alejandro Sánchez-Flores ◽  
Katy Juárez ◽  
Patricia Mussali-Galante

ABSTRACTThe objective of this study is to understand the functional potential of the microbial community related to bioremediation activity and its relationship with the pollution of each site to enhance the future design of more accurate bioremediation processes. Water samples were collected at four sampling sites along the Apatlaco River (S1-S4), and a whole metagenome shotgun sequencing was performed to know and understand the microbial community involved in bioremediation. Additionally, HMMER was used for searching sequence homologs related to PET and polystyrene biodegradation and metal transformation in Apatlaco River metagenomes. The Apatlaco River is characterized by the presence of a broad spectrum of microorganisms with the metabolic potential to carry out bioremediation activities. Every site along the Apatlaco River has a particular community to perform bioremediation activities. The first site S1 has Thiomonas, Polaromonas, Pedobacter, and Myroides, S2 has Pedobacter, Myroides, Pseudomonas and Acinetobacter, S3, Thiomonas, Myroides, Pseudomonas, Acinetobacter and Aeromonas; S4, Thiomonas, Myroides and Pseudomonas, Thauera.Furthermore, every site is rich in specific enzymes such as S1 has dioxygenase and dehydrogenase, which can degrade Catechol, Biphenyl, Naphthalene, and Phthalate. While, S2 and S3 are rich in dioxygenase and decarboxylating dehydrogenases to degrade Toluene, Fluorobenzoate, Xylene, Phenylpropanoate, and Phenol. S3 also has monooxygenases which degrade Benzene, and all the earlier mentioned enzymes were also found at S4.


Sign in / Sign up

Export Citation Format

Share Document