intrinsic bioremediation
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 4)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Carol L. Beaver ◽  
Estella A. Atekwana ◽  
Barbara A. Bekins ◽  
Dimitrios Ntarlagiannis ◽  
Lee D. Slater ◽  
...  

Geophysical investigations documenting enhanced magnetic susceptibility (MS) within the water table fluctuation zone at hydrocarbon contaminated sites suggest that MS can be used as a proxy for investigating microbial mediated iron reduction during intrinsic bioremediation. Here, we investigated the microbial community composition over a 5-year period at a hydrocarbon-contaminated site that exhibited transient elevated MS responses. Our objective was to determine the key microbial populations in zones of elevated MS. We retrieved sediment cores from the petroleum-contaminated site near Bemidji, MN, United States, and performed MS measurements on these cores. We also characterized the microbial community composition by high-throughput 16S rRNA gene amplicon sequencing from samples collected along the complete core length. Our spatial and temporal analysis revealed that the microbial community composition was generally stable throughout the period of investigation. In addition, we observed distinct vertical redox zonations extending from the upper vadose zone into the saturated zone. These distinct redox zonations were concomitant with the dominant microbial metabolic processes as follows: (1) the upper vadose zone was dominated by aerobic microbial populations; (2) the lower vadose zone was dominated by methanotrophic populations, iron reducers and iron oxidizers; (3) the smear zone was dominated by iron reducers; and (4) the free product zone was dominated by syntrophic and methanogenic populations. Although the common notion is that high MS values are caused by high magnetite concentrations that can be biotically formed through the activities of iron-reducing bacteria, here we show that the highest magnetic susceptibilities were measured in the free-phase petroleum zone, where a methanogenic community was predominant. This field study may contribute to the emerging knowledge that methanogens can switch their metabolism from methanogenesis to iron reduction with associated magnetite precipitation in hydrocarbon contaminated sediments. Thus, geophysical methods such as MS may help to identify zones where iron cycling/reduction by methanogens is occurring.


Author(s):  
Lateef Babatunde Salam ◽  
Oluwafemi Sunday Obayori

Abstract Background Soils polluted with animal charcoal from skin and hide cottage industries harbour extremely toxic and carcinogenic hydrocarbon pollutants and thus require a bio-based eco-friendly strategy for their depuration. The effects of carbon-free mineral medium (CFMM) amendment on hydrocarbon degradation and microbial community structure and function in an animal charcoal-polluted soil was monitored for 6 weeks in field moist microcosms consisting of CFMM-treated soil (FN4) and an untreated control (FN1). Hydrocarbon degradation was monitored using gas chromatography-flame ionization detector (GC-FID), and changes in microbial community structure were monitored using Kraken, while functional annotation of putative open reading frames (ORFs) was done using KEGG KofamKOALA and NCBI’s conserved domain database (CDD). Results Gas chromatographic analysis of hydrocarbon fractions revealed the removal of 84.02% and 82.38% aliphatic and 70.09% and 70.14% aromatic fractions in FN4 and FN1 microcosms in 42 days. Shotgun metagenomic analysis of the two metagenomes revealed a remarkable shift in the microbial community structure. In the FN4 metagenome, 92.97% of the population belong to the phylum Firmicutes and its dominant representative genera Anoxybacillus (64.58%), Bacillus (21.47%) and Solibacillus (2.39%). In untreated FN1 metagenome, the phyla Proteobacteria (56.12%), Actinobacteria (23.79%) and Firmicutes (11.20%), and the genera Xanthobacter (9.73%), Rhizobium (7.49%) and Corynebacterium (7.35%), were preponderant. Functional annotation of putative ORFs from the two metagenomes revealed the detection of degradation genes for aromatic hydrocarbons, benzoate, xylene, chlorocyclohexane/chlorobenzene, toluene and several others in FN1 metagenome. In the FN4 metagenome, only seven hydrocarbon degradation genes were detected. Conclusion This study revealed that though CFMM amendment slightly increases the rate of hydrocarbon degradation, it negatively impacts the structural and functional properties of the animal charcoal-polluted soil. It also revealed that intrinsic bioremediation of the polluted soil could be enhanced via addition of water and aeration.


2020 ◽  
Author(s):  
Lateef Salam ◽  
Oluwafemi S. Obayori

Abstract The effects of carbon-free mineral medium (CFMM) amendment on hydrocarbon degradation and microbial community structure and function in an animal charcoal polluted soil was monitored for six weeks in field moist microcosms consisting of CFMM treated soil (FN4) and an untreated control (FN1). Gas chromatographic analysis of hydrocarbon fractions revealed the removal 84.02% and 82.38% and 70.09% and 70.14% aliphatic and aromatic fractions in FN4 and FN1 microcosms in 42 days. Shotgun metagenomic analysis of the two metagenomes revealed a remarkable shift in the microbial community structure of FN4 metagenome with 92.97% of the population belonging to the phylum Firmicutes and its dominant representative genera Anoxybacillus (64.58%), Bacillus (21.47%) and Solibacillus (2.39%). In untreated FN1 metagenome, the phyla Proteobacteria (56.12%), Actinobacteria (23.79%), Firmicutes (11.20%); and the genera Xanthobacter (9.73%), Rhizobium (7.49%) and Corynebacterium (7.35%) were preponderant. Functional annotation of putative ORFs from the two metagenomes revealed the detection of degradation genes for benzoate (pcaD, mhpF, aliB, benD-xylL, benC-xylZ, badH, had, dmpD, ligC, CMLE, pcaL, acd), xylene (mhpF, benD-xylL, benC-xylZ, dmpD, cymB, cmtB), chlorocyclohexane/chlorobenzene (dehH, dhaA, linC, linX, pcpC), toluene (bbsG, bbsC, bbsD, tsaC1), and several others in FN1 metagenome. In FN4 metagenome, only seven hydrocarbon degradation genes namely dmpH, mhpD, bphH, nemA and three others were detected. This study has revealed that CFMM amendment negatively impacts the structural and functional properties of the animal charcoal polluted soil. It also revealed that intrinsic bioremediation of the polluted soil could be enhanced via addition of water and aeration.


2015 ◽  
Vol 99 (1-2) ◽  
pp. 138-149 ◽  
Author(s):  
Valentina Catania ◽  
Santina Santisi ◽  
Geraldina Signa ◽  
Salvatrice Vizzini ◽  
Antonio Mazzola ◽  
...  

2015 ◽  
Vol 34 ◽  
pp. 62-69
Author(s):  
Jun Jie Chen ◽  
Xu Hui Gao ◽  
Long Fei Yan ◽  
De Guang Xu

Monoaromatic pollutants such as benzene, toluene, ethylbenzene and mixture of xylenes are now considered as widespread contaminants of groundwater. In situ bioremediation under natural attenuation or enhanced remediation has been successfully used for removal of organic pollutants, including monoaromatic compounds, from groundwater. Results published indicate that in some sites, intrinsic bioremediation can reduce the monoaromatic compounds content of contaminated water to reach standard levels of potable water. However, engineering bioremediation is faster and more efficient. Also, studies have shown that enhanced anaerobic bioremediation can be applied for many BTEX contaminated groundwaters, as it is simple, applicable and economical. This paper reviews microbiology and metabolism of monoaromatic biodegradation and in situ bioremediation for BTEX removal from groundwater under aerobic and anaerobic conditions. It also discusses the factors affecting and limiting bioremediation processes and interactions between monoaromatic pollutants and other compounds during the remediation processes.


2015 ◽  
Vol 35 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Li Liu ◽  
Qi You ◽  
Yingfeng Tu ◽  
Quanyi Li ◽  
Lihong Zheng ◽  
...  

Background: There is an increasing interest in the role of astrocytes contributing to the intrinsic bioremediation of ischemic brain injury. The purpose of this study was to disclose the effects and mechanism of midazolam (MDZ) on the proliferation and apoptosis of astrocytes under oxygen glucose deprivation (OGD) condition. Methods: The astrocytes were assigned randomly into four groups: control group, OGD group, OGD+MDZ group, and OGD+MDZ+IL-6 group. The astrocytes were treated with MDZ at dose of 10 μmol/L in OGD+MDZ group. And in OGD+MDZ+IL-6 group, the astrocytes were treated with MDZ at dose of 10μmol/L and IL-6 at dose of 50 ng/mL. MTT assay was used to assess cell proliferation, and cell apoptosis was analyzed by TUNEL apoptosis assay kit and flow cytometry. Furthermore, the expression of JAK2, p-JAK2, STAT3, p-STAT3, Bcl-2, Bax and Caspase-3 proteins were determined by western blotting assay. Results: Astrocytes proliferation was decreased obviously in OGD group, while MDZ could increase astrocytes proliferation under OGD condition. Moreover, OGD could induce apoptosis in astrocytes and MDZ could play an anti-apoptotic role. However, IL-6, a JAK2 activator, could attenuate cell proliferation and anti-apoptotic effects of MDZ in astrocytes. In addition, the expression of Bcl-2 protein in MDZ group increased markedly, while the JAK2/STAT3 signal proteins, Bax and Caspase-3 proteins decreased relative to OGD group. But IL-6 could counteract the anti-apoptotic effects of MDZ. Conclusion: Midazolam has protective effects on the proliferation and apoptosis of astrocytes via JAK2/STAT3 signal pathway in vitro. We firstly disclose the beneficial roles of midazolam in astrocytes under ischemic condition, which may be a rational treatment selection for ischemic cerebral protection.


Sign in / Sign up

Export Citation Format

Share Document