Circular Economy and Agro-Industrial Wastewater: Potential of Microalgae in Bioremediation Processes

Author(s):  
Ulises Reno ◽  
Luciana Regaldo ◽  
Ana María Gagneten
Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1425
Author(s):  
N. Anes García ◽  
F. Blanco Álvarez ◽  
A. L. Marqués Sierra

The main objective of this study is the potential evaluation of obtaining bioplastics through biodegradable polyesters synthesized by bacteria, present in the anaerobic treatment of urban and industrial wastewater, which have a series of characteristics to consider as their processing as material bioplastic In Asturias, more than 70,000 tons of sludge are produced and, by applying circular economy criteria and technologies for the production of bioplastics from wastewater, a synergy could be obtained that would allow the reuse of sludge by valorization as raw material. to produce bioplastics. This valorization can be carried out mainly through the combination of two technologies, on the one hand, anaerobic fermentation to produce volatile fatty acids and on the other the generation of bacterial populations that produce Polyhydroxyalkanoates (PHA’s). The PHAs are obtained from the microorganisms present in the sludge generated in the wastewater treatment process.


J ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 51-62
Author(s):  
Sigrid Kusch-Brandt ◽  
Mohammad A. T. Alsheyab

A wastewater refinery is a multifunctional solution that combines different technologies and processing schemes to recover a spectrum of valuable materials from municipal or industrial wastewater. The concept of wastewater refinery introduces a new perspective on wastewater treatment and management. It aims at making the most of wastewater constituents by co-producing different worthful outputs, such as water, energy, nitrogen, sulfide, and phosphorous. This can turn the treatment of wastewater from a major cost into a source of profit. The wastewater refinery approach is well aligned with the concept of the circular economy. A case study on Qatar’s wastewater revealed the potential recovery of significant quantities of valuable resources embodied in the country’s wastewater. Valorization of organic constituents and the recovery of nitrogen, phosphorus, and sulfide should be given priority. To facilitate the adoption of the wastewater refinery concept, research is required to explore technical and economic bottlenecks.


2021 ◽  
pp. 125795
Author(s):  
Walter José Martinez-Burgos ◽  
Eduardo Bittencourt Sydney ◽  
Adriane Bianchi Pedroni Medeiros ◽  
Antonio Irineudo Magalhães ◽  
Júlio Cesar de Carvalho ◽  
...  

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 159
Author(s):  
Efthymios Rodias ◽  
Eirini Aivazidou ◽  
Charisios Achillas ◽  
Dimitrios Aidonis ◽  
Dionysis Bochtis

Circular economy is emerging as a regenerative concept that minimizes emissions, relies on renewable energy, and eliminates waste based on the design of closed-loop systems and the reuse of materials and resources. The implementation of circular economy practices in resource-consuming agricultural systems is essential for reducing the environmental ramifications of the currently linear systems. As the renewable segment of circular economy, bioeconomy facilitates the production of renewable biological resources (i.e., biomass) that transform into nutrients, bio-based products, and bioenergy. The use of recycled agro-industrial wastewater in agricultural activities (e.g., irrigation) can further foster the circularity of the bio-based systems. In this context, this paper aims to provide a literature review in the field of circular economy for the agrifood sector to enhance resource efficiency by: (i) minimizing the use of natural resources (e.g., water, energy), (ii) decreasing the use of chemical fertilizers, (iii) utilizing bio-based materials (e.g., agricultural/livestock residues), and (iv) reusing wastewater from agrifood operations. The final objective is to investigate any direct or indirect interactions within the water-energy-nutrients nexus. The derived framework of synergetic circular economy interventions in agriculture can act as a basis for developing circular bio-based business models and creating value-added agrifood products.


Author(s):  
Alisson Castro do Nascimento ◽  
Bruna Figueiredo do Nascimento ◽  
Maryne Patrícia da Silva ◽  
Ronald Silva Santos ◽  
Tássila Pereira Neves ◽  
...  

Biologia ◽  
2016 ◽  
Vol 71 (1) ◽  
Author(s):  
Elvira E. Ziganshina ◽  
Emil M. Ibragimov ◽  
Olga N. Ilinskaya ◽  
Ayrat M. Ziganshin

AbstractInvestigating the microbial community structure and composition of toxic industrial wastes contaminated with nitrocellulose and various by-products is crucial for understanding the fate of these pollutants in the environment and for the development and application of efiective bioremediation processes. In this study, we investigated the chemical properties and toxic potential of wastewater generated during nitrocellulose production. The analyzed wastewater from settling pond contained nitrocellulose powder particles as well as increased ammonium (570–760 mg/L), sulfate (1625– 2045 mg/L) and sulfite (864–1014 mg/L) concentrations. The toxicity test results demonstrated that the wastewater samples present acute toxicity for


2010 ◽  
Vol 13 (3) ◽  
pp. 54-66
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

This study was performed to evaluate the efficiency of tapioca processing wastewater treatment using aerobic biofilter with variety of biofilter media: coir, coal, PVC plastic and Bio - Ball BB15 plastic. Research results in the lab demonstrated all four aerobic biofilter models processed can treated completely N and COD which COD reached 90-98% and N reached 61-92%, respectively, at the organic loading rates in range of 0.5, 1, 1.5 and 2 kgCOD/m3.day. The results identified coir filter was the best in four researched materials with removal COD and specific substract utilization rate can reach 98%, and 0.6 kg COD/kgVSS.day. Research results open the new prospects for the application of the cheap materials, available for wastewater treatment.


Author(s):  
Tamara Merkulova ◽  
Kateryna Kononova ◽  
Olena Titomir

Author(s):  
Susan EVANS

This case study explores the strategic business opportunities, for Lane Crawford, an iconic luxury department store, to transition in a circular economy towards sustainability. A new experimentation framework was developed and conducted among cross departmental employees, during a Design Lab, with intention to co-create novel Circular Economy business concepts towards a new vision: the later was a reframe of the old system based on the principles of sustainability; to move beyond a linear operational model towards a circular economy that can contribute to a regenerative society. This work draws on both academic and professional experience and was conducted through professional practice. It was found that innovative co-created concepts, output from the Design Lab, can create radical change in a circular economy that is holistically beneficial and financially viable; looking forward to extract greater value a)Internal organization requires remodeling to transform towards a circular economy; b)Requirement for more horizonal teams across departments vs solely vertical; c)New language and relationships are required to be able to transition towards a circular economy; d)Some form of physical and virtual space requirements, for cross-disciplinary teams to come together to co-create; e)Ability to iterate, learn and evolve requires agency across the business


Sign in / Sign up

Export Citation Format

Share Document