Comparison of the Solubility of Conventional Luting Cements with that of the Polyacid Modified Composite Luting Cement and Resin-modified Glass Ionomer Cement

2016 ◽  
Vol 17 (12) ◽  
pp. 1016-1021 ◽  
Author(s):  
Mathew Thomas ◽  
Mohammed Mustafa ◽  
Reshma Karkera ◽  
AP Nirmal Raj ◽  
Lijo Isaac ◽  
...  

ABSTRACT Introduction This study was planned to find the solubility of the conventional luting cements in comparison with that of the polyacid-modified composite luting cement and recently introduced resin-modified glass ionomer cement (RMGIC) with exposure to water at early stages of mixing. Materials and methods An in vitro study of the solubility of the following five commercially available luting cements, viz., glass ionomer cement (GIC) (Fuji I, GC), zinc phosphate (Elite 100, GC), polyacid-modified resin cement (PMCR) (Principle, Dentsply), polycarboxylate cement (PC) (Poly - F, Dentsply), RMGIC (Vitremer, 3M), was conducted. For each of these groups of cements, three resin holders were prepared containing two circular cavities of 5 mm diameter and 2 mm depth. All the cements to be studied were mixed in 30 seconds and then placed in the prepared cavities in the resin cement holder for 30 seconds. Results From all of the observed luting cements, PMCR cement had shown the lowest mean loss of substance at all immersion times and RMGIC showed the highest mean loss of substance at all immersion times in water from 2 to 8 minutes. The solubility of cements decreased by 38% for GIC, 33% for ZnPO4, 50% for PMCR, 29% for PC, and 17% for RMGIC. Conclusion The PMCR cement (Principle-Dentsply) had shown lowest solubility to water at the given time intervals of immersion. This was followed by PC, zinc phosphate, and GIC to various time intervals of immersion. How to cite this article Karkera R, Nirmal Raj AP, Isaac L, Mustafa M, Reddy RN, Thomas M. Comparison of the Solubility of Conventional Luting Cements with that of the Polyacid Modified Composite Luting Cement and Resin-modified Glass Ionomer Cement. J Contemp Dent Pract 2016;17(12):1016-1021.

2014 ◽  
Vol 25 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Iara A. Orsi ◽  
Fernando K. Varoli ◽  
Carlos H.P. Pieroni ◽  
Marly C.C.G. Ferreira ◽  
Eduardo Borie

The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm2. Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm2), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm2 and the zinc phosphate cement with 1.155 MPa/mm2. Glass ionomer cement (0.884 MPa/mm2) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.


2003 ◽  
Vol 14 (3) ◽  
pp. 193-196 ◽  
Author(s):  
Simonides Consani ◽  
Julie Guzela dos Santos ◽  
Lourenço Correr Sobrinho ◽  
Mário Alexandre Coelho Sinhoreti ◽  
Manoel Damião Sousa-Neto

The relationship between metallic cast crowns and tensile strength according to cement types submitted to thermocycling was studied. Seventy-two metallic crowns were cast with Verabond II Ni-Cr alloy and cemented in standardized preparations with 10º tapering. Three types of finishing line (45-degree chamfered, 20-degree bevel shoulder and right shoulder) were made with diamond burs on bovine teeth. Twenty-four metallic crowns in each group were randomly subdivided into three subgroups of 8 samples each according to the cement used: SS White zinc phosphate cement, Vitremer resin-modified glass ionomer cement, and Rely X resin cement and were submitted to thermocycling. Retention was evaluated according to tensile load required to displace the metallic cast crowns from tooth preparations with an Instron testing machine. ANOVA and Tukey's test showed a statistically significant difference among luting materials, with greater results for Rely X resin cement (24.9 kgf) followed by SS White zinc phosphate cement (13.3 kgf) and Vitremer resin-modified glass ionomer cement (10.1 kgf). The finishing line types did not influence the tensile resistance of the crowns fixed with the three cements. Increased tensile resistance of metallic crowns fixed on bovine teeth was obtained with resin cement, independent of the finishing line types.


2010 ◽  
Vol 34 (4) ◽  
pp. 309-312 ◽  
Author(s):  
Priya Subramaniam ◽  
Sapna Kondae ◽  
Kamal Kishore Gupta

The present study evaluated and compared the retentive strength of three luting cements. A total of forty five freshly extracted human primary molars were used in this study. The teeth were prepared to receive stainless steel crowns. They were then randomly divided into three groups, of fifteen teeth each, so as to receive the three different luting cements: conventional glass ionomer, resin modified glass ionomer and adhesive resin. The teeth were then stored in artificial saliva for twenty four hours. The retentive strength of the crowns was determined by using a specially designed Instron Universal Testing Machine (Model 1011). The data was statistically analyzed using ANOVA to evaluate retentive strength for each cement and Tukey test for pair wise comparison. It was concluded that retentive strength of adhesive resin cement and resin modified glass ionomer cement was significantly higher than that of the conventional glass ionomer cement.


Author(s):  
Thalyta Brito Santos Lima ◽  
Isabela Nunes Souza ◽  
Raquel Santos De Oliveira ◽  
João Milton Rocha Gusmão ◽  
Isabel Celeste Caires Pereira Gusmão ◽  
...  

Objectives: The objective of this study was to evaluate, in vitro, the possible antimicrobial activity against the A actinomycetemcomytans of three dental cements: glass-ionomer cement, zinc phosphate cement and resin cement. Material and Methods: Strains of A actinomycetemcomitans ATCC 29522 were used. The microorganism was grown in BHI Agar and transferred to tubes containing sterile saline solution. The suspension was calibrated to a similar turbidity to the 0.5 tube from McFarland scale. A base layer consisting of 20 ml of BHI agar was placed in sterile Petri 90 x 15 mm plates. After solidification, was added 0,1 uL of microbial suspension, and three wells with 6 mm in diameter and 1mm deep were made, the wells were filled with cements with zinc phosphate cement, glass-ionomer cement and resin cement indicated for permanent cementation for fixed prostheses immediately after handling and positive (chlorhexidine) and negative (saline) controls. Results: After 48 hours the presence or absence of inhibition halo of microbial growth was analyzed around the specimens. Conclusion: Zinc phosphate cement and glass ionomer cement tested showed antibacterial activity against A actinomycetemcomitans unlike resin cement.


2019 ◽  
pp. 61-67
Author(s):  
Xuan Anh Ngoc Ho ◽  
Anh Chi Phan ◽  
Toai Nguyen

Background: Class II restoration with zirconia inlay is concerned by numerous studies about the luting coupling between zirconia inlay and teeth. The present study was performed to evaluate the microleakage of Class II zirconia inlayusing two different luting agents and compare to direct restoration using bulk fill composite. Aims: To evaluate the microleakage of Class II restorations using three different techniques. Materials and methods: The study was performed in laboratory with three groups. Each of thirty extracted human teeth was prepared a class II cavity with the same dimensions, then these teeth were randomly divided into 3 groups restored by 3 different approaches. Group 1: zirconia inlay cemented with self-etch resin cement (Multilink N); Group 2: zirconia inlay cemented with resin-modified glass ionomer cement (Fuji Plus); Group 3: direct composite restoration using bulk fill composite(Tetric N-Ceram Bulk Fill). All restorations were subjected to thermal cycling (100 cycles 50C – 55 0C), then immersed to 2% methylene blue solution for 24 hours. The microleakage determined by the extent of dye penetration along the gingival wall was assessed using two methods: quantitative and semi-quantitative method. Results: Among three types of restorations, group 1 demonstrated the significantly lower rate of leakage compared to the others, while group 2 and 3 showed no significant difference. Conclusion: Zirconia inlay restoration cemented with self-etch resin cement has least microleakage degree when compare to class II zirconia inlay restoration cemented with resin-modified glass ionomer cement and direct composite restoration using bulk fill composite. Key words: inlay, zirconia ceramic, class II restoration, microleakage.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Koubi ◽  
H. Elmerini ◽  
G. Koubi ◽  
H. Tassery ◽  
J. Camps

This study compared thein vitromarginal integrity of open-sandwich restorations based on aged calcium silicate cement versus resin-modified glass ionomer cement. Class II cavities were prepared on 30 extracted human third molars. These teeth were randomly assigned to two groups () to compare a new hydraulic calcium silicate cement designed for restorative dentistry (Biodentine, Septodont, Saint Maur des Fossés, France) with a resin-modified glass ionomer cement (Ionolux, Voco, Cuxhaven, Germany) in open-sandwich restorations covered with a light-cured composite. Positive () and negative () controls were included. The teeth simultaneously underwent thermocycling and mechanocycling using a fatigue cycling machine (1,440 cycles, 5–55°C; 86,400 cycles, 50 N/cm2). The specimens were then stored in phosphate-buffered saline to simulate aging. After 1 year, the teeth were submitted to glucose diffusion, and the resulting data were analyzed with a nonparametric Mann-Whitney test. The Biodentine group and the Ionolux group presented glucose concentrations of 0.074 ± 0.035 g/L and 0.080 ± 0.032 g/L, respectively. No statistically significant differences were detected between the two groups. Therefore, the calcium silicate-based material performs as well as the resin-modified glass ionomer cement in open-sandwich restorations.


Sign in / Sign up

Export Citation Format

Share Document