scholarly journals Effect of cement types on the tensile strength of metallic crowns submitted to thermocycling

2003 ◽  
Vol 14 (3) ◽  
pp. 193-196 ◽  
Author(s):  
Simonides Consani ◽  
Julie Guzela dos Santos ◽  
Lourenço Correr Sobrinho ◽  
Mário Alexandre Coelho Sinhoreti ◽  
Manoel Damião Sousa-Neto

The relationship between metallic cast crowns and tensile strength according to cement types submitted to thermocycling was studied. Seventy-two metallic crowns were cast with Verabond II Ni-Cr alloy and cemented in standardized preparations with 10º tapering. Three types of finishing line (45-degree chamfered, 20-degree bevel shoulder and right shoulder) were made with diamond burs on bovine teeth. Twenty-four metallic crowns in each group were randomly subdivided into three subgroups of 8 samples each according to the cement used: SS White zinc phosphate cement, Vitremer resin-modified glass ionomer cement, and Rely X resin cement and were submitted to thermocycling. Retention was evaluated according to tensile load required to displace the metallic cast crowns from tooth preparations with an Instron testing machine. ANOVA and Tukey's test showed a statistically significant difference among luting materials, with greater results for Rely X resin cement (24.9 kgf) followed by SS White zinc phosphate cement (13.3 kgf) and Vitremer resin-modified glass ionomer cement (10.1 kgf). The finishing line types did not influence the tensile resistance of the crowns fixed with the three cements. Increased tensile resistance of metallic crowns fixed on bovine teeth was obtained with resin cement, independent of the finishing line types.

2014 ◽  
Vol 25 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Iara A. Orsi ◽  
Fernando K. Varoli ◽  
Carlos H.P. Pieroni ◽  
Marly C.C.G. Ferreira ◽  
Eduardo Borie

The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm2. Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm2), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm2 and the zinc phosphate cement with 1.155 MPa/mm2. Glass ionomer cement (0.884 MPa/mm2) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.


2018 ◽  
Vol 6 (3) ◽  
pp. 548-553 ◽  
Author(s):  
Bandar M. A. Al–Makramani ◽  
Abdul A. A. Razak ◽  
Mohamed I. Abu–Hassan ◽  
Fuad A. Al–Sanabani ◽  
Fahad M. Albakri

BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations.AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.


2010 ◽  
Vol 34 (4) ◽  
pp. 309-312 ◽  
Author(s):  
Priya Subramaniam ◽  
Sapna Kondae ◽  
Kamal Kishore Gupta

The present study evaluated and compared the retentive strength of three luting cements. A total of forty five freshly extracted human primary molars were used in this study. The teeth were prepared to receive stainless steel crowns. They were then randomly divided into three groups, of fifteen teeth each, so as to receive the three different luting cements: conventional glass ionomer, resin modified glass ionomer and adhesive resin. The teeth were then stored in artificial saliva for twenty four hours. The retentive strength of the crowns was determined by using a specially designed Instron Universal Testing Machine (Model 1011). The data was statistically analyzed using ANOVA to evaluate retentive strength for each cement and Tukey test for pair wise comparison. It was concluded that retentive strength of adhesive resin cement and resin modified glass ionomer cement was significantly higher than that of the conventional glass ionomer cement.


2018 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Dr. Sazan Sherdil Saleem

The present study was aimed to evaluate and compare the compressive strength ofconventional glass ionomer cement with resin modified glass ionomer, compomer andmicrohybrid composite. A total of 40 specimens of esthetic restorative materials werefabricated using customized cylindrical teflon mould measuring 6mm height and 4mmdiameter and were grouped with ten specimens in each group, Group I: Conventionalglass ionomer cement (Fuji II). Group II: Resin modified glass ionomer (Fuji II LC).Group III: Compomer (Dyract AP) and Group IV: Microhybrid composite resin(Tetric Ceram).They were covered with Mylar strip and were cured using LED lightcuring unit. Compressive strength was evaluated using Universal testing machine. Theresult showed that there were a significant difference among the groups in whichTetric Ceram showed highest compressive strength and Fuji II showed the leastcompressive strength


2016 ◽  
Vol 17 (12) ◽  
pp. 1016-1021 ◽  
Author(s):  
Mathew Thomas ◽  
Mohammed Mustafa ◽  
Reshma Karkera ◽  
AP Nirmal Raj ◽  
Lijo Isaac ◽  
...  

ABSTRACT Introduction This study was planned to find the solubility of the conventional luting cements in comparison with that of the polyacid-modified composite luting cement and recently introduced resin-modified glass ionomer cement (RMGIC) with exposure to water at early stages of mixing. Materials and methods An in vitro study of the solubility of the following five commercially available luting cements, viz., glass ionomer cement (GIC) (Fuji I, GC), zinc phosphate (Elite 100, GC), polyacid-modified resin cement (PMCR) (Principle, Dentsply), polycarboxylate cement (PC) (Poly - F, Dentsply), RMGIC (Vitremer, 3M), was conducted. For each of these groups of cements, three resin holders were prepared containing two circular cavities of 5 mm diameter and 2 mm depth. All the cements to be studied were mixed in 30 seconds and then placed in the prepared cavities in the resin cement holder for 30 seconds. Results From all of the observed luting cements, PMCR cement had shown the lowest mean loss of substance at all immersion times and RMGIC showed the highest mean loss of substance at all immersion times in water from 2 to 8 minutes. The solubility of cements decreased by 38% for GIC, 33% for ZnPO4, 50% for PMCR, 29% for PC, and 17% for RMGIC. Conclusion The PMCR cement (Principle-Dentsply) had shown lowest solubility to water at the given time intervals of immersion. This was followed by PC, zinc phosphate, and GIC to various time intervals of immersion. How to cite this article Karkera R, Nirmal Raj AP, Isaac L, Mustafa M, Reddy RN, Thomas M. Comparison of the Solubility of Conventional Luting Cements with that of the Polyacid Modified Composite Luting Cement and Resin-modified Glass Ionomer Cement. J Contemp Dent Pract 2016;17(12):1016-1021.


2018 ◽  
Vol 32 (3) ◽  
pp. 127 ◽  
Author(s):  
Gabriela De Souza Balbinot ◽  
Isadora Martini Garcia ◽  
Susana Maria Werner Samuel ◽  
Fabricio Mezzomo Collares ◽  
Vicente Castelo Branco Leitune

OBJECTIVE: The aim of this study was to evaluate the influence of octacalcium phosphate (OCP) addition to conventional glass ionomer cement (GIC).METHODOLOGY: A commercial glass ionomer cement (Vidrion R – S.S. White Artigos Dentários Ltda – Rio de Janeiro, Brazil) was used in this study. OCP was added to powder in 1.5 and 3 wt%. GIC without OCP addition was used as control. Specimens were produced to evaluate radiopacity, setting time and diametral tensile strength of cements. Radiopacity was assessed by phosphor plate system with alluminium step-wedge for comparison. For setting time determination, Gilmore needle (100 g) was used to determine final setting reaction. Diametral tensile strength was measured in a universal testing machine. Data were analyzed by one-way ANOVA at a significance level of 95%.RESULTS: Results showed no statistically significant difference in tested properties with octacalcium phosphate addition in any concentration.CONCLUSION: OCP addition to GIC did not influence materials properties.


2012 ◽  
Vol 23 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Adriano Augusto Melo de Mendonça ◽  
Camila Fávero de Oliveira ◽  
Josimeri Hebling ◽  
Carlos Alberto de Souza Costa

This study evaluated the transdentinal cytotoxicity (TC) and the bond strength (BS) of a resin-modified glass-ionomer cement (RMGIC) applied to dentin covered with smear layer (SL) of different thicknesses. Forty dentin discs had thick (TSL) or thin (THSL) smear layer created on their occlusal side. In artificial pulp chambers, MDPC-23 cells were seeded on the pulpal side of the dentin discs and divided into five groups: G1TC: no treatment (control); G2TC: TSL + RMGIC; G3TC: THSL + RMGIC; G4TC: TSL removal + RMGIC; G5TC: THSL removal + RMGIC. After 24 h, cell metabolism and morphology were evaluated by the methyltetrazolium (MTT) assay and by scanning electron microscopy (SEM), respectively. For BS, the following groups were determined: G1BS: TSL removal + RMGIC; G2BS: THSL removal + RMGIC; G3BS: TSL + RMGIC; G4BS: THSL + RMGIC. Shear bond strength was tested to failure in a mechanical testing machine MTS (0.5 mm/min). Statistically significant difference was observed only between the control and experimental groups (Kruskal-Wallis, p<0.05). The metabolic activity of the viable MDPC-23 cells in G2TC, G3TC, G4TC and G5TC decreased by 54.85%, 60.79%, 64.12% and 62.51%, respectively. Mean shear bond strength values for G1BS, G2BS, G3BS and G4BS were 7.5, 7.4, 6.4 and 6.7 MPa, respectively, without significant difference among them (ANOVA, p>0.05). RMGIC presented moderate transdentinal cytotoxic effects. Maintenance or removal of smear layer did not affect the bond strength of RMGIC to dentin substrate.


2019 ◽  
pp. 61-67
Author(s):  
Xuan Anh Ngoc Ho ◽  
Anh Chi Phan ◽  
Toai Nguyen

Background: Class II restoration with zirconia inlay is concerned by numerous studies about the luting coupling between zirconia inlay and teeth. The present study was performed to evaluate the microleakage of Class II zirconia inlayusing two different luting agents and compare to direct restoration using bulk fill composite. Aims: To evaluate the microleakage of Class II restorations using three different techniques. Materials and methods: The study was performed in laboratory with three groups. Each of thirty extracted human teeth was prepared a class II cavity with the same dimensions, then these teeth were randomly divided into 3 groups restored by 3 different approaches. Group 1: zirconia inlay cemented with self-etch resin cement (Multilink N); Group 2: zirconia inlay cemented with resin-modified glass ionomer cement (Fuji Plus); Group 3: direct composite restoration using bulk fill composite(Tetric N-Ceram Bulk Fill). All restorations were subjected to thermal cycling (100 cycles 50C – 55 0C), then immersed to 2% methylene blue solution for 24 hours. The microleakage determined by the extent of dye penetration along the gingival wall was assessed using two methods: quantitative and semi-quantitative method. Results: Among three types of restorations, group 1 demonstrated the significantly lower rate of leakage compared to the others, while group 2 and 3 showed no significant difference. Conclusion: Zirconia inlay restoration cemented with self-etch resin cement has least microleakage degree when compare to class II zirconia inlay restoration cemented with resin-modified glass ionomer cement and direct composite restoration using bulk fill composite. Key words: inlay, zirconia ceramic, class II restoration, microleakage.


2004 ◽  
Vol 12 (4) ◽  
pp. 344-348 ◽  
Author(s):  
Eduardo Bresciani ◽  
Terezinha de Jesus Esteves Barata ◽  
Ticiane Cestari Fagundes ◽  
Akimi Adachi ◽  
Marina Martins Terrin ◽  
...  

The aim of this study was to compare, in different periods of time, the compressive and diametral tensile strength of a traditional high viscous glass ionomer cement: Fuji IX (GC Corporation), with two new Brazilian GIC's: Vitro-Molar (DFL) and Bioglass R (Biodinamica), all indicated for the Atraumatic Restorative Treatment (ART) technique. Fifteen disk specimens (6.0mm diameter x 3.0mm height) for the diametral tensile strength (DTS) test and fifteen cylindrical specimens (6.0mm diameter x 12.0mm height) for the compressive strength (CS) test were made of each GIC. Specimens were stored in deionized water at 37º C and 100% of humidity in a stove until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours and 7 days. The specimens were tested in a testing machine (Emic) at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The data were submitted to two-way ANOVA and Tukey tests (alpha=0.05). The mean CS values ranged from 42.03 to 155.47MPa and means DTS from 5.54 to 13.72 MPa, with test periods from 1h to 7 days. The CS and DTS tests showed no statistically significant difference between Fuji IX and Vitro Molar, except for CS test at 1-hour period. Bioglass R had lowest mean value for CS of the cements tested. In DTS test Bioglass R presented no statistically significant differences when compared with all others tested GICs at 1-hour period and Bioglass R presented no difference at 24-hour and 7-day periods when compared to Vitro-Molar. Further studies to investigate other physical properties such as fracture toughness and wear resistance, as well as chemical composition and biocompatibility, are now needed to better understand the properties of these new Brazilian GIC's.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Deniz Gemalmaz ◽  
Cornelis H. Pameijer ◽  
Mark Latta ◽  
Ferah Kuybulu ◽  
Toros Alcan

The purpose of this study was to evaluate the disintegration of luting agents. An intraoral sample holder was made having four holes of 1.4 mm diameter and 2 mm depth. The holder was soldered onto the buccal surface of an orthodontic band, which was cemented to the first upper molar in 12 patients, average age 26 years. The holes were filled with a zinc phosphate (Phosphate Kulzer), a glass ionomer (Ketac Cem), a resin-modified-glass ionomer (Fuji Plus), and a resin cement (Calibra). Impressions were made at baseline, and 6, 12, and 18 months from which epoxy replicas were made, which were scanned with an optical scanner. Total volume loss was calculated. The rank order of mean volume loss was as follows: Phosphate cement > Ketac Cem = Fuji Plus = Calibra. Cement type and time had statistically significant effects on volume loss of cements (P<0.001). Under in vivo conditions, zinc phosphate cement disintegrated the most, whereas no significant difference was observed for glass ionomer and resin-based cements. As intraoral conditions are considerably less aggressive than experimental laboratory conditions, the erosion behavior of glass ionomer cement was found to be similar to the resin-based cements in contradiction to previous laboratory results.


Sign in / Sign up

Export Citation Format

Share Document