Kinetics of Oxidation of Columbium And Other Refractory Metals★

CORROSION ◽  
1962 ◽  
Vol 18 (10) ◽  
pp. 382t-389t ◽  
Author(s):  
J. N. ONG ◽  
W. M. FASSELL

Abstract The oxidation of tungsten and molybdenum occurs by two consecutive reactions, forming first a suboxide then the trioxide. Tantalum and columbium oxidize by four simultaneous reactions: solution of oxygen in the metal, nucleation and growth of a suboxide phase at the metal surface and two phase boundary processes giving rise to two different modifications of the pentoxide. By assuming that all reactions are first order complex chain reactions, rate equations are formulated giving the rate of oxidation as a function of pressure, temperature and time. Regression rate expressions for the metals tungsten, tantalum and columbium above 700 C are given as;; and, respectively. The rate is expressed in cm/hr, T is in degrees K and Po2 in atmospheres pressure of oxygen. 3.8.4, 2.1,1, 6.3.5, 6.3.16, 6.3.13

2011 ◽  
Vol 8 (2) ◽  
pp. 903-909 ◽  
Author(s):  
Shan Jinhuan ◽  
Zhang Jiying

The kinetics of oxidation of diethanolamine and triethanolamine by potassium ferrate(VI)in alkaline liquids at a constant ionic strength has been studied spectrophotometrically in the temperature range of 278.2K-293.2K. The reaction shows first order dependence on potassium ferrate(VI), first order dependence on each reductant, The observed rate constant (kobs) decreases with the increase in [OH-], the reaction is negative fraction order with respect to [OH-]. A plausible mechanism is proposed and the rate equations derived from the mechanism can explain all the experimental results. The rate constants of the rate-determining step and the thermodynamic activation parameters are calculated.


2005 ◽  
Vol 70 (4) ◽  
pp. 585-592 ◽  
Author(s):  
J.H. Shan ◽  
S.Y. Huo ◽  
S.G. Shen ◽  
H.W. Sun

The kinetics of oxidation of 1,2-propanediol and 1,2,3-propanetriol by dihydroxyditelluratoargentate(III) (DDA) were studied spectrophotometrically between 298.2 K and 313.2 K in alkaline medium. The reaction rate showed first order dependence on DDA and 1 < nap < 2 order on the reductant. It was found that the pseudo-first order rate constant kobs increased with increasing concentration of OH-1 and decreasing concentration of TeO42-. There is a negative salt effect and no free radicals were detected. In view of this, the dihydroxymonotelluratoargentate(III) species is assumed to be the active species. A plausible mechanism involving a two-electron transfer is proposed and the rate equations derived from the mechanism can explain all the experimental results. The activation parameters, as well as the rate constants of the rate-determining step were calculated.


2011 ◽  
Vol 8 (3) ◽  
pp. 1371-1377
Author(s):  
Shan Jinhuan ◽  
Yang Yafeng

The kinetics of oxidation of isobutylamine and 1,4-butanediamine by home-made potassium ferrate(VI) at different conditions has been studied spectrophotometrically in the temperature range of 288.2 -303.2 K. The results show first order dependence on potassium ferrate(VI) and on each reductant. The observed rate constant (kobs) decreases with the increase of [OH-], the reaction was negative fraction order with respect to [OH-]. A plausible mechanism was proposed and the rate equations derived from the mechanism can explain all the experimental results. The rate constants of the rate-determining step and the thermodynamic activation parameters were calculated.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Jinhuan Shan ◽  
Caihong Yin

The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III) (DTA) in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant(kobs)increased with an increase in concentration of OH−and a decrease in concentration ofH4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.


1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.


2003 ◽  
Vol 58 (8) ◽  
pp. 787-794 ◽  
Author(s):  
B.Thimme Gowda ◽  
K. L. Jayalakshmi ◽  
K. Jyothi

In an effort to introduce N,N-dichloroarylsulphonamides of different oxidising strengths, four mono- and five di-substituted N,N-dichlorobenzenesulphonamides are prepared, characterised and employed as oxidants for studying the kinetics of oxidation of dimethyl sulphoxide (DMSO) in 50% aqueous acetic acid. The reactions show first order kinetics in [oxidant], fractional to first order in [DMSO] and nearly zero order in [H+]. Increase in ionic strength of the medium slightly increases the rates, while decrease in dielectric constant of the medium decreases the rates. The results along with those of the oxidation of DMSO by N,N-dichlorobenzenesulphonamide and N,N-dichloro-4- methylbenzenesulphonamide have been analysed. Effective oxidising species of the oxidants employed in the present oxidations is Cl+ in different forms, released from the oxidants. Therefore the introduction of different substituent groups into the benzene ring of the oxidant is expected to affect the ability of the reagent to release Cl+ and hence its capacity to oxidise the substrate. Significant changes in the kinetic and thermodynamic data are observed in the present investigations with change of substituent in the benzene ring. The electron releasing groups such as CH3 inhibit the ease with which Cl+ is released from the oxidant, while electron-withdrawing groups such as Cl enhance this ability. The Hammett equation, log kobs = −3.19 + 1.05 σ , is found to be valid for oxidations by all the p-substituted N,N-dichlorobenzenesulphonamides. The substituent effect on the energy of activation, Ea and log A for the oxidations is also analysed. The enthalpies and free energies of activation correlate with an isokinetic temperature of 320 K.


1990 ◽  
Vol 55 (6) ◽  
pp. 1535-1540 ◽  
Author(s):  
Prerepa Manikyamba

Kinetics of oxidation of 1- and 2-acetylnaphthalenes by iodate in the presence of sulphuric acid in aqueous methanol has been studied. The reaction is first order with respect to both [iodate] and [acetylnaphthalene]. Solvent effect indicates a cation-dipole type of interaction in the rate limiting step. A mechanism is proposed with a slow attack of IO2+ on enol form of acetylnaphthalene forming an intermediate carbonium ion, which ultimately gives corresponding ω-hydroxyacetylnaphthalene. The higher reactivity of 2-acetyl isomer is attributed to the greater stability of the corresponding carbonium ion than that of 1-acetyl isomer.


1974 ◽  
Vol 143 (2) ◽  
pp. 353-363 ◽  
Author(s):  
Patricia J. Harrigan ◽  
David R. Trentham

The kinetics of the acylation of d-glyceraldehyde 3-phosphate dehydrogenase from pig muscle by 1,3-diphosphoglycerate in the presence of NAD+ has been analysed by using the relaxation temperature-jump method. At pH7.2 and 8°C the rate of acylation of the NAD+-bound (or holo-) enzyme was 3.3×105m−1·s−1 and the rate of phosphorolysis, the reverse reaction, was 7.5×103m−1·s−1. After a temperature-jump perturbation the equilibrium of NAD+ binding to the acyl-enzyme was re-established more rapidly than that of the acylation. The rate of phosphorolysis of the apoacylenzyme from sturgeon muscle and of aldehyde release from the d-glyceraldehyde 3-phosphate–apoenzyme complex were ≤40m−1·s−1 and ≤12s−1 respectively at pH8.0 and 22°C, which means that both processes are too slow to contribute significantly to the reaction pathway of the reversible NAD+-linked oxidative phosphorylation of d-glyceraldehyde 3-phosphate. Phosphorolysis of both acyl-apoenzyme and acyl-holoenzyme was first-order in Pi up to 100mm-Pi and more. PO43− could be the reactive species of the phosphorolysis of the acyl-holoenzyme, in which case phosphorolysis is a diffusion-controlled reaction, although other kinetically indistinguishable rate equations for the reaction are possible.


Sign in / Sign up

Export Citation Format

Share Document